
®

TRS-BO MODEL 1/111

SERIES I
EDITOR
ASSEMBLER

~ TRS-BD

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK

Catalog
Number

26-2011
26-2013

SOFTWARE

TM

A DIVI.SION OF TANDY CORP.

TRS-80 Series•/ Tape/Disk Editor/Assembler (9 1981 Tandy Corpo
ration. All rightI reserved.

Deri1'edfrom original Tape Ediror!Assembler © 1978 Microsoft.
Licensed to Tandv Corporation.

Series I t'ditor Assembler Manual © 198/ Tandy Corporation. All
rights reserved.

Reproduction or use without express written permission from Tandy
Corporation, of any portion of this manual is prohibited. While rea
sonable efforts have been taken in the preparation ,,f' this manual 10

assure its accw'acy, Tandy Corporation assumes no liability resultinr:
from any errors or omissions in this manual, or from the use of the
information obtained herein.

Please refer to the Software license on the back of this manualfi,r lim
itations on use and reproduction ff this Software package.

NOTICE TO MODEL III OWNERS OF THE
SERIES I EDITOR/ASSEMBLER

Catalog Number 26-2011

When operating the Editor/Assembler, you will use the
<SHIFT> key to type certain symbols, such as & , i, $,or*·
Use the LEFT <SHIFT> key only. Do not use the right
<SHIFT> key to type these symbols.

8759128

Important Note to
Model Ill Users

From time to time, Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making
any mod1ficat1ons to your existing software packages (applications. lan
guages. or system utilities):

• Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

• Before converting a Radio Shack supplied Model I software package to a
Model Ill format, check to see if Radio Shack provides a Model Ill version
of the package. If so, you should obtain a copy of that version.

• If you·re using several different software packages, press the RESET but
ton whenever you change software.

Thank-You!

lad1e lhaell
°'{; A Division of Tandy Corporation

8759106

CONTENTS

Table of Contents

1. Introduction . 1
What is an Editor/ Assembler? . 1
The Series-I Editor/ Assembler . 1
The Scope and Organization of This Manual 3
Notation Conventions . 4

2. Loading the Editor/ Assembler . 5
Tape Systems- level II and Model 111 BASIC 5
Tape Systems-- Level I . 5
Disk Systems . 6

3. Using the Editor . 7

4. Using the Assembler . 21

5. Sample Programming Session . 31

6. The z-so Instruction Set . 45

7. Appendices
A. Using the TPSRC Utility (Disk Systems Only) 227
B. ROM and TRsoos uo Subroutines 228
C. z-so Status Indicators (Flags) 231
D. Numerical Listing of z-so Instruction Set 234
E. Alphabetical Listing of z-so Instruction Set 240
F. z-so CPU Register and Architecture 246
Index .. 253

INTRODUCTION

Part One:

Introduction
What Is an Editor/ Assembler?
An editor/assembler is a two-part program that lets you communicate with a
computer in its low-level, ''native'' language, rather than in some high le.vel,
"foreign" language like BASIC or FORTRAN. We call this native language
'·machine-language.''

Using the editor, you enter the machine-language source code, consisting of a
convenient set of abbreviations and symbols. The assembler then converts or
assembles this into object code, which the Computer understands.

But I thought my TRS-80 spoke BASIC!

Well, you 're right, it does. But only because it contains a built-in BASIC

interpreter. This interpreter converts or interprets your BASIC programs into
object code, which the computer can understand.

With a Built-In interpreter, Who Needs Machine-Language?

Well, if you -

• Enjoy learning how things-especially, computers-work;

• Want to do things faster than BASIC will allow;

• Want to make the most efficient use of your Computer's memory;

• Want to modify the way your computer inputs and outputs data

-then you need machine-language. (Of course, there are plenty of other
reasons you may want to use it.)

The Series-I Editor/ Assembler
There are two versions of this software package, one for tape and one for disk
systems.

Tape Version
Three cassette tapes are included. One contains EDTASM, which is the Editor;
Assembler. Level II and Model llI BASIC customers may load and run this tape
using BASJC's SYSTEM. command. The second tape contains SYSTEM. This
program is for Level I customers with a minimum of J6K memory. It is loaded

SERIES I EDITOR/ASSEMBLER

with the CLOAD command, and prepares the Level I Computer to load the
EDTASM tape. The third tape contains a sample program for tape systems with at
least 32K of RAM. If you have only 16K, you can still type in and use the sample
program given in Section 5.

Disk Version
Two diskettes are included. There is one in Model I TRSDOS format and one in
Model III

The disk version software includes three programs:

• EDTASM, the Editor/Assembler program

• SAMPLE/SRC, a source listing of all the Z-80 instructions

• TPSRC, a utility to read source tapes written by the tape version of the Editor/
Assembler and two write object "sYSTEl'v1'' tapes.

The Series-I Editor/ Assembler is especially good for beginners of machine
language programming. Its commands and features are fairly simple, and it does
not require that you understand advanced programming concepts. On the other
hand, experienced programmers will find this editor/assembler a workable tool
for all but the most complex, large-scale applications.

Features

Editor Features
• Automatic line numbering convenient source-code entry.

• Line renumbering command with automatic renumbering if necessary.

• Single-letter commands plus optional parameters.

• Global search capability for changing your source text.

• Source text may be saved on tape or disk, depending on your computer
system.

• Source files on tape or disk may be loaded or "chained" in memory.

• Source text may be listed to the printer.

Assembler Features
• Controlled by a single-letter command with optional switches.

• Options include: wait on error, no symbol table, list to printer, and trial
assembly with no object code output.

• Supports labels up to six characters long.

• Eight pseudo-ops.

• Resides in memory with the Editor, so you can easily go back and forth
between editing and assembling.

2

INTRODUCTION

Scope and Organization of This Book
In this manual, we will show you how to use the Editor/Assembler. Along the
way, we'll cover a few principles of assembly-language programming. We'll
include a sample program. Even if you don't understand assembly-language
programming, you should be able to try oul this sample program.

In the next section (Section 2), we'1l 1ell you how to load the Editor/Assembler,
We'll assume you already know how to start-up your Computer, and to get it to
the BASIC READY level (cassette systems) or to the TRSDOS READY level (disk
systems). There are separate loading instructions for:

• Tape systems-- Level I

• Tape systems--- Level II and Model lI1 BASJC

• Disk systems - I\fodels 1 and HI TRSDOS

In Section 3, we'll show you how to use the editor. This section is organized for
ease of use the first time through. Fm quick reference later on, there's an
alphabetical summary of a!! editor features at the end of Section 3.

In Section 4, we describe the assembler. Here we'll simply explain the
command format and syntax. You 'JI need this information when you
to writing your own assembly-language programs.

In Section we present a sample assembly-language program. We go through
all the procedures, from entering the program to loading and executing the
assembled version.

Section 6 is a complete Z-80 instruction set ·--the native language of your TRS-80.

This manual is written for use with Modei I or HI systems either tape or
disk storage. There are a few operational differences, depending on 'Which
system you have. In these cases, we have written separate instrnctions for the
differing systems. Follow those pertaining to your Computer.

What else do I need?
To write your own assembly-language programs. you'll need more information
than is contained in this manual. If you know Z-80 or another assembly
language, this manual will probably be sufficient. But if you've never done any
assembly-language programming, you'll need to do some further study.

Radio Shack sells an ideal hook for future TRS-80 assembly-language
programmers: TRS-80 Assembly Language Progrnrnming. by William Barden, Jr.
Its catalog number is 62-2006. Although it was written specifically for the
Model I TRS-80, most of it applies as well to the Model m.

3

SERIES I EDITOR/ASSEMBLER

Notation and Special Terms Used in This Book

Notations

COMPUTER TYPE

italic type

[optional
information]

Special Terms

Indicates material that is input to or output from the
Computer. Note: All computer prompts in this manual
are giyen in uppercase.

Represents variable information that you provide in a
command. (i.e., file names, line numbers, etc.)

Key which you should press. These will not be visible
on the screen.

Square brackets enclose optional parts of a command.

source code (or text) An assembly-language source program you have loaded
from tape or disk or typed.

source file An assembly-language source program you have saved
on tape or disk.

object code The output from the assembler, i.e., coded Z-80

instructions.

object file Object code stored on tape or disk so that it may be
loaded and executed.

4

LOADING THE EDITOR/ASSEMBLER

Part 1\vo:

Loading the Editor/ Asse01bler
Tape Systems-Level II and Model ill BASIC
The Editor/Assembler is a machine-language program stored on tape at 500
baud. Its file name is EDTASM.

1. Turn on your Computer and press (ENTER) to the prompt for memory size. (In
Model III systems, first type L to the CASS? prompt.)

2. Get your recorder ready to play the Editor/Assembler tape.

3. Type SYSTEM (ENTER), then EDTASM (ENTER). The Computer will begin loading
from the tape. After a successful load (takes about 2 minutes), the*? prompt
will reappear.

4. Type/ (ENTER). The Editor/Assembler starts by displaying a heading followed
by an asterisk at the beginning of the next line. The asterisk is the prompt,
telling you the Editor/Assembler is waiting for a command.

Now skip to Section 3.

Tape Systems-Level I BASIC
Before you can load the Editor/ Assembler tape, you must get your Computer
into a "system" mode. The SYSTEM tape does this.

1. Turn on your Computer. It should be in the READY mode.

2. Get your recorder ready to play the SYSTEM tape.

3. Type CLOAD ~- The Computer will begin loading from the tape. After a
successful load (takys about 2 minutes), a "PRESS ENTER WHEN CASSETTE
IS READY" will appear on the next display line. Your Computer is now in
the system mode.

4. Prepare the recorder to play the EDTASM tape.

5. Press~- The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), the Editor/Assembler will start by
displaying a heading followed by an asterisk at the beginning of the next line.
The asterisk is the prompt, telling you the Editor/ Assembler is waiting for a
command.

5

SERIES I EDITOR/ASSEMBLER

6. Volume setting may need to be adjusted for a successful load.

Now skip to Section 3.

Disk Systems
The program file name for the Editor/Assembler is EDTASM/CMD.

l. Under TRSDOS READY, type: EDTASM (ENTER).

2. The Editor/Assembler will start by displaying a heading, followed by an
asterisk on the next line. The * is the prompt, indicating the Editor/
Assembler is waiting for a command.

6

USING THE EDITOR

Part Three:

Using the Editor
Assuming you have just started the Editor/ Assembler, it is displaying an asterisk
on the screen. This is the "prompt" It tells you the Editor/Assembler is waiting
for a command.

The Editor consists of commands that allow you to create, edit, save and load
your source programs. We'll divide these commands into three groups:

• Text-handling-creating and modifying the source program.

• File input/output -- saving the program on disk or tape and loading it frorn disk
or tape.

• Miscellaneous-- getting the memory status, exiting from the Editor/
Assembler.

Special Terms

Before using the commands, we need to define a few special terms used in this
section.

"text'' is the information (source program) that you have entered into the
Computer. The insert command allows you to begin entering text one line at a
time, pressing ~-l>JI~JlJ at the end of each line. The Editor automatically numbers
each line.

"text buffer" is the area in memory where your text is stored.

"current line" is the line most recently entered. displayed, or referenced in a
command.

"file" is the source text stored on tape or disk.

"file name" is the name given to the file. In tape systems, the file name consists
of from one to six letters or numbers. In disk systems, the file name follows the
rules of TRSDOS ii le specifications (for full details, see your TRSDOS reference
manual):

filename [/ext] [.password] f :d]

"'inc'· or "increment" refers to the number which is used to c01npute
successive line numbers for your text. When you start the Editor. the increment
equals 10.

7

SERIES I EDITOR/ASSEMBLER

''line ref·· or "line reference'' is the way you specify a single line in your text.
A line reference may be any number from O to 65529, or any of the following
special symbols:

ti First line in the text buffer
The current line

•Ii- The last line in the text buffer

"line range" indicates a range of lines in your text file; it is a pair of line
references separated hy a colon.

line-ref:lim>-ref

"1m" and "EoF" -- refer to top of file (firs! line) and end of file (end of file).
The Editor will use these abbreviations in certain messages to you.

Sample Commands
These examples are simply to show the use of the special terms and notation.
The commands are explained later in detail.
P 100 "Pnnt line 100."
P #:, "Print text from the first line to the cun·ent line.
D , '' Delete the current line."

line ref., inc "Start inserting at line, using inc as an increment between
lines. ("line ref." and "inc'' arc variables you replace with
appropriate values.)

A .Few Words about Spaces

In general, spaces arc not significant inside editor commands. You may use
them or omit them. Exception: No spaces inside a tile name, line reference or in
the comrmmd CtJ-Find.

Special Keys

lENTE'1) 'fo complete a command or a line of text, you must press this

([{l[@ To cancel a command or to stop inserting text, press this key.
The line that the C!!.!it~KJ is pressed is not saved. Press (BREAK]
on the line following the last line.

~ Press this key to see the previous line of text.

~J Press this key to see the next line of text.

CU This key erases the previously typed character.

Cl-:: This functions as a tab key, You will use it while inserting
text. The tab positions are spaced eighl columns apart.

LEFT (~H!FTJ (• J This erases the line you have been typing,

(@J This causes a pause in a listing or printout. Press any key to
continue.

Editor Co1nmands
We'll cover the co1nmands in a typical sequence in which you might use them.
For an alphabetical sumrnary, see the end of this section.

8

USING THE EDITOR

Text Handling Con1mands

Inserting Your Text

When the asterisk is displayed, you may type in a command--not your source
text. To enter source text, you must get into the insertion mode.

First, to get your Computer "in step" with our examples, type D #:* (tNT(l)).
That erases any text that you might already have entered into the text buffer.

Now we'll go into the insertion mode. Type I ~TE~J. The Computer will
display 00100. All we do is type in text for line JOO and press (ffil",18). The
Computer will automatically provide the next line number.

0010(2)

00110

ANY CHARACTERS FOLLOWING A SEMI-COLON (;) IS A
COMMENT (]NTE])

We may continue like this until we finish entering the text. Remember to press
(filf!"ER) at the end of each line.

00110
00120
00130

; PRESS - > AT THE START OF THE NEn LI NE (Eft[e:BJ
RET ; A t.lERY SHORT PROGRAM (E.NTE_B)

In line 120, we pressed tab CU once at the beginning of the line, and once after
RET Tabs are very important in source programs; they are used instead of spaces
to separate the standard fields in an assembly-language program. (We'll explain
further in part 4.)

That's all the text we want to type in for now, so press (D]EAKJ The asterisk will
reappear on the next line.

Displaying Your Text

To see the text, use the Print command. For example: P #:* (t.NlE]). This tells
the Computer to display all the lines in the text buffer. To see a single line,
specify that line, as in: P 100 (ENTel{J. Another way to display lines one at a time
is with~ (previous line) and~) (next line).

If you omit a line reference, the Con1puter will display a sereenful of lines,
starting at the current line. This is a good way to look at a large text file, one
screenful at a time. Simply press P ((!>;!)EB) to see the next screenful.

Note: If the total file is to be displayed you may execute T (ENTER) prior to Print
conunand to insure that current line is TOF.

Getting a Hard-Copy of the Source Program

To output to a line printer instead of to the display, substitute "H" (hard copy)
for "p"_ For example, the command H #:* prints out the entire source program.
If printer is not ready press (»REAi{) to return to command line.

(For instructions on getting hard copy of an assembled program, see Section 4.)

9

SERIES I EDITOR/ASSEMBLER

Adding Lines between Existing Lines

Suppose you want to add a line between lines 100 and 110. Use the Insert
command. but specify a starting line number between !00 and l 10:

105

00105 ; TH IS LI NE IS ADDED (fJf'[Efl)
00115 (BREAK)
*

When you pressed (ENTE.B) for line 105, the Computer used the current increment
(10) to generate line 115, which will not be between 100 and 110. 1<) insert more
than one line between any two lines, you can specify an increment of I.

For example,

I 105 1 l CfNTEff)
00108

Line 105 is already in use, so the Computer gives you the next number, using an
increment of l :

00106 iWE 'LL JUST TYPE IN A FEW LINES (filf[tll)
00107 lNOTI CE THAT THE INCREMENT OF 1 IS STILL IN USE crrnl::H)
00108 ; ~!HAT WI LL HAP PEN WHEN WE REACH LI NE 1 HJ? (ElITfHl
00108 ; THAT LI NE IS ALREADY IN USE • , , Cf_tUJB)
00110 , • , , BUT EDTASM GI%S YOU TH1Yf NUMBER ANYl,.IAY, 1&.N_'[!:Ji)

00111 (BREAK)

A line ·'collision"' was about to occur when you entered line 110, since that
number was already in use. So the Editor automatically renumbered all lines.

To begin inserting lines at the end of the file, use the Bollom command.
5 (ENTEB). This makes the current line the last line.

Changing a Line in Your Text

To make a change within a line of text. use the Edit command. This puts you in
a special intra-line edit mode in which several useful functions are available. 'fo
begin editing a line, type E followed by the line number (or line symbol'·#",
''*'', ".")and press CfN.!®. The Computer will display the line number
followed by the cursor (blinking block or underline.). This is your "working
copy" of the line. Changes you make will not take effect until you exit from the
intra-line edit mode.

To exit from the intra-line edit mode, press (t_NJ':E.B) or E Cf.N.tf_8) and changes are
saved. Press (BfilA,g) or 0 (INI~_B) and the line remains in its original form.

10

USING THE EDITOR

Here are the functions available in the intra-line edit mode:

n (SPACEBAR)

(!)

n ([) e

n CID

n (K) e

n ©cl ... en

([) newtext

00

®

(ENTER) or (I)

~ or([)

Lists the line in its current form and starts a new working
copy on the next line.

(Spacebar) Moves the cursor forward n spaces, showing the
next n characters in the line. If n is omitted, 1 is used.

Moves cursor back one space in the line, but does not erase
the character from the working copy.

(Search) Positions the cursor at the nth occurrence of
character e, counting from the current cursor position. If n
is omitted, positions to the first occurrence after the current
position.

Deletes the next n characters. If n is omitted, 1 is used.

(Kill) Deletes all characters up to the nth occurrence of
character e. If n is omitted, deletes up to the first
occurrence.

Changes the next n characters to characters e 1 . . . en.

(Again) Cancels all changes made and lets you edit the line
again.

Insert newtext. Insertion will continue until you press
(SHIFT) @ or (ENTER). While inserting, the (I) key will erase
a character, and the (SPACEBARJ will insert a space. You must
exit from this insertion function before you can use any of
the other editing functions.

(Extend) Begin inserting at the end of the line.

(Hack) Delete remainder of the line and begin inserting at
the current position.

Exits to the * command level. The changes you made will
take effect.

(Quit) Exits to the * command level. The changes you made
will be canceled.

The best way to learn to use these edit functions is to experiment with them. For
example, type E (ENTER) to start editing the current line. The Computer will
display the line number. Press OJ to see the line in its current form and start a
new working copy. Now try each of the commands listed above.

Remember: To exit from the intra-line editor at any time, press (ENTER). To stop
the insertion function but continue editing, press (SHm) @.

11

SERIES I EDITOR/ASSEMBLER

Replacing a Line

You cannot use the Insert command to replace a line, because the Computer will
always renumber the lines in case of a line collision. li) replace a line, type R
followed by the line reference and press (EN]IID.

For example, to replace line lOO, type: R 100 (EN_ltfl). The Computer will
display 00100. Go ahead and type in the new text for this line. When you press
\ffl,ITRJ, the Computer will act just as it does in the line insertion mode: it will
compute a new line number using the current increment and renurnbering the
lines if necessary to avoid a collision. From this point on, you are inserting, not
replacing. Only line 100 is replaced.

Deleting Lines

To delete a range of lines, type D line range. For example.

D 100 Deletes line 100
D • Deletes the current line
D 100: 120 Deletes all lines from 100-120
0 :I-'!:* Deletes all lines (first to last)

Finding a String within Your Text

The Find command searches through your text for any one word string you
specify, and tells you which lines contain the text.

Suppose you have a large text file in memory, and you wam to change each
occurrence of "LBL" to "LABEL.'' The Find command will identify each line
that contains "LBL.'' Simply type: T CfilittID to position the current line to the
beginning of the text, then type FLBL (Eflfl;ft)_ The Computer will search for the
string of characters immediately following the F and ending with the carriage
return ((ENTEID).

The editor will print the line number of the first occurri;:m;e of LBL. That line
becomes the current line. You may begin editing it by typing E (E!lf!lfi}

To find subsequent occurrences of LBL, simply type F C~HIE'Bl. The editor
continues searching at the current position and remembers the string being
searched.

Remember: (1) Type in the search string immediately after the ''F" with no
spaces, unless the search string starts with spaces. (2) The Find cmnmand
begins searching at the cum~nt line, so set the current line to TO! tirst if you
want to search through the entire text.

Renumbering Your Text

After inserting line~ (and having them automatically renumbered), you may
want to renumber them "manually." The Nuniber command does this, Type N
start-line, increment (fJlt:EID. Start-line will be the lowest-numbered line in the
renumbered program.

12

USING THE EDITOR

For example, the command: N 1000, 10 C~]IER: renumbers the text 1000,
1010, 1020, etc.

After renumbering, the current line is the last line in the file, and the increment
is what you specified in the N command.

[f no start line is typed, the renumbering will begin with the current line. 1f no
increment is specified, 10 is used.

Source File Input/Output Commands

In this section, we'll show how to save a source program and then reload iL
(For instructions on outputting and loading an object file, see Section 4.)

There are three general groups of editor 110 commands:

• Writing the source program to tape or disk

• Loading the source program from tape or disk

• Printing the source program on the display or on a line printer. We've already
described these commands (H and Pl.

Saying the Source Program

Once you have typed in and edited a source program, you should save it on tape
or disk. That way, if you ever need to modify the source program, yuu won't
have to retype it; you can sin1ply load it and make changes,

The tape version of Editor/ Assembler always assumes you want tape uo, and the
disk version assumes you want disk vo. (Disk systems may load source tapes
via the TAPESRC utility, described later in the appendix.)

Note to Model IU Customers: All tape 110 is done at 500 baud, regardless of the
cassette baud rate you selected when you started up the Computer.

Tape Systems

1. Using a blank cassette tape. put your recorder into the record mode,

2. Type Wfile Ctlf.TIB). Use a file name from one to six characters. You may omit
the file name, in which case the tape tile will be named NONAME.

Example:

w M (HJ E (Of!'.t.ID

3. The Editor/Assembler will prompt you to get the cassette recorder ready. Be
sure it's in the record mode, then press lt.NJJ'B.). The Editor1Assembler will
write the text onto the tape.

4. After writing the tape, the Editor/ Assembler will return to the command
mode (asterisk).

5. Make at least one additional tape copy of the program.

13

SERIES I EDITOR/ASSEMBLER

6. Remove the tape from the recorder and label it. Be sure to identify it as a
source tape.

Disk Systems

1. Type W file (ENTER). For file, use a standard TRSDOS file name with an optional
password and drive specification. The Editor will automatically add the
extension 1SRC to the file name. To override this, include a different extension
in the file specification.

You may omit the file name. in which case the tile will be called NONAME/

SRC.

Example:

w M (I l,I E (ENIEID
writes the source program into the file MOVEiSRC.

2. After writing out the file, the Editor will return to the command mode
(asterisk).

Loading a Source Program

Tape Systems

1. Prepare the recorder to play the source tape.

2. Type L file (ENiER). For file. substitute the correct file name. If there are
several files on the tape, the Editor will search through them until it reaches
the one you named. You may omit the file name, in which case the first file
on the tape will be loaded.

Before the Editor starts loading from the tape, it will prompt you to get the
cassette recorder ready. Press (ENTER) when ready.

3. After loading the source program, the Editor will return to the command
mode (asterisk).

Disk Systems

I. Type L file (INTIID. For file, specify the file in standard TRSDOS form. IJ the
specification you give does not include an extension, the Editor will
automatically use the extension 1SRC.

14

You may omit the file specification. The Editor will then attempt to load a file
named NONAME!SRC.

USING THE EDITOR

(If you already have a source program in the text buffer, the Editor will
warn you:

TEXT IN BUFFER, CHAIN FILES?

If you want to add the disk file onto the end of the current text in memory,
type Y (ENTER). This will chain the new file onto the end of the file in memory
and automatically renumbers the total file. If you don't want to "chain" the
files, but wish to erase the current file and load the new one, type N (ENTER).)

2. After loading the file, the Editor will return to the command mode (asterisk).

Miscellaneous Commands

Determining the Memory Status

To find out the size of the current source program and the amount of free
memory, type M (ENTER). The status will be shown in bytes.

Exiting from the Editor/ Assembler

The quit command (Q (ENTER)) takes you out of the Editor/Assembler and back
to TRSDOS or BASIC (if you are in a level II computer). Before using this
command, be sure to save your source program, if desired, because you won't
be able to recover it simply by restarting the Editor/ Assembler.

15

SERIES I EDITOR/ASSEMBLER

Editor Error and Warning Messages

16

BAD PARAMETER (s) This indicates that you gave the
editor an invalid command.
Check the syntax used, and the
values of parameters given (they
may be out of range).

BUFFER FULL The area assigned to text
storage is full. You may be able
to split the source text into two
modules.

LI NE NUMBER TOO LARGE During the generation of new line
numbers (insertion or line
renumbering) a line number
greater than 65529 was needed.
This is too large. Use a smaller
line number increment.

NO SUCH LI NE A reference was made to an
unused line number.

NO TEXT IN BUFFER All commands except load,
insert, memory-status, and quit
require some text to be in the
buffer.

STRING NOT FOUND You issued a find command and
the editor could not locate the
string you specified. Be sure you
had the current line set properly
(find begins searching at the
current line number).

Editor/Assembler Alphabetical Summary

Special Keys

(E}JJfB)

lBREAJ(J

CD
~

(SHIFJJC.U

CtJ

Symbols and Abbreviations

*

fine ref

line range

inc

Executes the current command.

Cancels or interrupts a command.

Erases the last character typed.

Displays the previous text line.

Displays the next text line ..

Erases the entire line. (Use left
shift key only)

Tabs forward eight spaces.

Pauses execution of a command:
press again to continue.

Escapes from the character
insertion command in the edit
mode. (Use left shift key

First line in text

Last line in text

Current line in text

A single line number or line
(#, *, or .).

A pair of line refs separated by a
colon (line ref ; iine ref)

An increment between lines.

USING THE EDITOR

17

SERIES I EDITOR/ASSEMBLER

Commands

A [file] [,switch ...] Assemble. Switches are: LP (line
printer, WE (wait on error), NL (no
listing), NS (no symbol table), NO

(no object code output).

5 List bottom (last) line of text.

D [line ref or line range) Delete line(s).

E [line ref] Edit line ref.
Subcommands
(!J Lists working copy of line
n (SPACEBARJ Advance n spaces.
CD Backspace 1 space.
n (I) C Search for nth occurrence of c.
n® Delete next n characters.
n (K) C Kill up to nth occurrence of c.
n © c1 ... en Change next n characters to

c1 ... en.
® Cancel changes and start again.
(I) newtext Insert newtext. Press (ENTER) or

(SHIFT)~ to quit.
00 Extend line.
CID Hack rest of line and begin

inserting.
(ENTER) or CE) Exits to the command level;

changes take effect.
(BBEAKlor([J Cancels changes and quits editing.

F [text string] Find the text string immediately
following the letter "F"; or find the
current text string. (No space
between(£) and text string).

H [line range] List lines on the printer. If printer
not ready use (8BEAKl to recover.

I [line ref] Line] Insert at line ref using inc. If no
line ref has been determined 100
is used.

L [file] Load a source file.

M Display memory status.

N [line ref] Linc] Renumber text.

p [line range) List lines on the display.

18

[lino ref]

T

W [file]

Ouit Editor1Assembler; rotum to
! rnsuos or BASIC (Level Iii i ' ,

Replace iine and continuEl in the
line insertion mode.

List top (first) line of text.

Write a source file,

USING THE EDITOR

19

USING THE ASSEMBLER

Part Four:

Using the Asseinbler
In Section 3, we showed you how to type in, edit, and save a source program.
For a source program, we used an arbitrarily chosen text.

Now we are ready to discuss the assembler-the software that converts your
source text into object code that can be understood by the TRs-so·s z-so
microprocessor, and writes this object code to a tape or disk file. We'll break
this section up into three parts:

A. The Assemble command--syntax. options, file output, error conditions, etc.

B. Assembler language-definitions, syntax, input/output format, etc.

If you're new to assembly language, you don't have to read all this now. You
may skip to Section 5, which presents a sample programming session. This will
give you hands-on experience with the Editor/ Assembler. Then, when you come
back to this section, you'll have a better idea of what it's all about ...

The Assemble Command

You enter the Assemble command at the command level (asterisk). It consists
of the abbreviation "A" followed by a space and an optional file name and
optional switches. (We call them "switches" because they tum various
functions on and off.)

There are various combinations of spaces and commas that will work in the
assemble command. For simplicity, we'll stick with one workable set of rules
for command syntax.

A [tile] [,switch ... I

The file name and switch are optional. (If no file name is used, you must still
type in a space after the "A.") Every switch used must be preceded by a
comma. Spaces before or after the file are acceptable and have no effect.

A source program must be originated in RAM or loaded into RAM before it can be
assembled.

21

SERIES I EDITOR/ASSEMBLER

For example:

A ZAP,NS,NL,WE ~HI.EB)
"ZAP" is the file name; "'Ns", "NL'' and "wE" are switches The commas are
required. The meaning of this and the following commands will be explained in
the following pages.

A ,NO ,WE 1NS (ffiifilll
No file name is given.

As another example:

A (SPACEBARJ LENTEB)

No file name or switches are specified.

File Nan1e
The tile name you specify will be assigned to the tape or disk object file. If you
omit a file name, "NONAME" will be used. (For further details, see File Output
later in this section. 'l

Switches

if you don't specify any switches in your assemble command, the Assembler
will do the following:

• Print the assembly listing on the screen

• Print error and warning messages in the listing without pausing

• Print a symbol table after the listing is completed

• Output the object code to tape or disk. using the file name you specified (or
''r,:ONAME" if you omitted one}

Fkre are the switches available. You may use as many as you want in any order.
Remember to put a comma before each switch used.

22

LP

WE

NL

NS

NO

(Line printer) Output listing, error messages, and
symbol table to the line printer, not to the display.

(Wait on error) Pause after each error message;
operator presses (ftffER) to continue.

(No listing) Don't output an assembly listing.

(No symbol table) Don't output a symbol table.

(No output) Don't output any object code.

USING THE ASSEMBLER

File Output-Disk Systems
If you do not specify the NO switch, and if no terminal en-ors occur during the
assembly, the Assembler will write the object code to the disk file you specify.

Use a standard TRSDOS file name with an optional password and drive
specification. The Assembler will automatically add the extension ";cMo" to
the file name. To override this, include a different extension in the file
specification.

If you omit a file specification, the Assembler will use "NONAME/CMD" as the
object file.

Examples:

A ZAP ,NO ,WE

Waits on errors, does not output object code.

A ZAP ,LP

Outputs the assembly listing to the printer, outputs object code to ZAP1CMD.

Use of Object Files

Every object file is stored in a special format that allows it to be loaded and
executed by TRSDOS. An object file cannot be loaded by the Editor/ Assembler.
(Since it is no longer in text fom1, the Editor/ Assembler can't do anything
with }t.)

To load and execute an object file program while you are in the TRSDOS READY

mode, type the file name and press lENTEID. If the extension is "1CMD," you
don't need to include it in the file name.

To load an object file and return to TRSDOS READY, type LOAD filename (ENTER).
In this case, you must include the extension even if it is '";cl\m." For further
details on the use of object files, see Section 5.

Now skip ahead to "Assembler Error Messages."

File Output-Tape Systems
Note to Model If! Customers: All tape output is done at 500 baud.

If you do not specify the "'No" switch, and if no terminal errors occur, the
Assembler will write the object code to cassette tape. using the file name you
specify. The file name may be from one to six characters long. If you omit one,
"NONAME" will be used.

Before writing the tape, the Assembler will prompt you to get the cassette ready.
Using a blank tape. prepare the recorder to record; when ready. press rultUfl.
The Assembler will then write the tape.

Make at least two copies of each object tile. Remove the cassette and label it as
an "object" tape.

23

SERIES I EDITOR/ASSEMBLER

Use of Object Tapes

Object tapes are stored in a special format for loading via the SYSTEM command.
(Levei I systems must tirst load the SYSTE\\I tape; then the object tape.) An
object file cannot be loaded by the Editor/Assembler. (Since it is no longer in
text form .. the Edi1or/Asseir1bler can't do anything with iL)

To load an object tape while in BASIC. type: SYSTEM O;J~J_f_fil thenjilenamc f};]fllID
. After the tape has been loaded. you may press (8-8.E!K) to return to
B \SlC, or/ address CEJftIR! to begin execution at the specified address. If you
type ! CENI[R), mnirting the address, an address specified on the tape itself will
be used. (For details, see the Section 5.)

Assembler Error Ivfossages
Four kinds of e1Tors rnay occur after you enter an af,1;emble command.

l. Command errors. if there is an error in your command, no assembly will be
attempted. The Assembler will display the message ''BAD PARAMETER\S1'

2. Terminal errors. During assernbly, an unrecoverable e!Tor ocrnrred. The
assembly is cancelled.

The only terminal error is "SYMBOL TABLE OVERFLOW." This occurs when
there is not enough memory to handle the symbol tabies required for
assembly. Use a machine with more memory (if possibk), or break the
prograrn up into modules and assemble them separately.

3. Fatal errors. One of the source lines contained an error. No object code is
generated for the offending line, but the assembly continues. Here are the
1erminal errors:

24

5f'.\D U\BEL

E}(PRESS I Ohi Ef~ROf·?

ILLEGAL ADDRESSING MODE

IL:-EGAL OPCODE

Invalid sequence of
characters were used
as a label. (See
''labElls:')

An invalid expression
was used as an
operand. (See
"expressions:')

One of the operands
used is illegal with the
specified Z-80
instruction.

Unrecognizable
characters were used
in the opcode
(mnemonic) field.

MISSING INFORMATION Mnemonic or

-----~_o_p_e_ra_n_d_s~~.~e missing.

USING THE ASSEMBLER

4. Warnings. A probable error occurred, but the assembler will generate object
for the offending line anyway. The code may not be what the programmer
intended. Warning messages are:

BRANCH OUT OF RANGE

FIELD (H.JERFLOW

MULTIPALLY DEFINED SYMBOL

MULTIPLE DEFINITION

NO END STATEMENT

UNDEFINED SYMBOL

Assembly Language

Relative branch
instruction outside of
the range - 126 to
+ 129 bytes.
instruction is
assembled to branch
to itself.

An operand (number
or expression) is out
of range for the
specified instruction.
The operand is set
equal to zero.

A label has been used
to identify two different
places or represent
two different values.
All but the first
definition will be
ignored

A duplicate operand is
used.

No end statement was
found.

The operand field
contains a symbol
which has not been
defined. A value of O
is used for this
symbol.

In the first part of Section 4, we discussed the use of the assemble commarn.l. In
this pari, we'll discuss Asscrnbly as a programming language.

An assembly program is made up of source statements. Each source statement
consists of up to four fields. A · •field" is a range of columns on the display.
We'll agree to consider column l to he the first colunm of source text Cotumn l

SERIES I EDITOR/ASSEMBLER

is the first column after a space that follows the line number. Source statements
are written using the I (insert) command.

Field Column Range

Label 1-6
Mnemonic 9-15
Operand(s) 17-31
Comment May begin anywhere but must be

preceeded by a semi-colon(;).

Labels are used to identify individual source statements. A label may be from
one to six characters. It must start with an alphabetical character. For example:

MOVE
LOOP
LOOP1
CLS
Tl

are all valid labels. Labels must start in column 1.

Mnemonics are the abbreviations used to represent z-so operations, for example:

LD Load
DEC Decrement
RET Return

Mnemonics are also called "operation codes" or "opcodes." Mnemonics must
start in column 9.

Operands are the values used by certain assembler statements. An operand may
be a Z-80 register or vo port, or a one- or two-byte value. For example:

LD A,3

tells the Z-80 to load into register A the number 3. "A" and "3" are operands.
Symbols may be used in place of actual numbers. For example:

LD HL ,VIDEO

tells the Z-80 to load into register HL the value for VIDEO (defined elsewhere in the
program). The first operand must start in column 17.

Comments document the program. They are ignored by the assembler. A
comment may begin in any column of a source statement, subject to the
following limitations: All comments start with a semi-colon, which tells the
assembler to ignore the rest of the line.

When you type in a source program, use a tab (Cf) key) to separate the fields,
not spaces. This method is faster and saves memory. Furthermore, the tab
settings correspond to the first columns in each field.

26

USING THE ASSEMBLER

Example:

00100 i THIS IS A SAMPLE PROGRAM
00110
00120 iLAEIEL MNEM, OPERAND(Sl COMMENT
00130 ORG 32700 iFOR 18K MACHINES
00140 BEGIN LD HL,3C00H i(Hll = l,J IDEO RAM l
00150 LD A I'*'
00180 LD (Hll ,A iWRITE ASTERISK TO VIDEO
00170 RET iRETURN TO CALLER
00180 END iEND OF SOURCE PROGRAM

Lines 100-120 are comments. Lines 130-170 consists of assembly-language
statements followed in most cases by comments.

There should be one tab character at the end of each field. Spaces (entered via
(SPACEBARl should only be used inside comments and inside character constants.

Assembler Statements
There are three kinds of assembler statements:

1. Pseudo Operations. Sometimes called "pseudo ops;' these statements are not
translated into Z-80 object code. They control various functions of the
assembler itself, such as defining labels, reserving memory, and setting the
programs origination address. Pseudo ops must begin in column 9.

2. Commands. These are also directed at the assembler. The Series I Assembler
has two assembler commands, *LIST ON and *LIST OFF (described later). These
commands must begin in column 1.

3. z-so Operations. These consist of a mnemonic (sometimes called an operation
code or "opcode") sometimes followed by one, two or no operands. They
are translated directly into object code. Some Z-80 instructions translate into
one byte of object code; others may translate into two, three, or four bytes.
The opcode must begin in column 9. Tabbing one time moves to column 9.

Special Terms and Abbreviations for Operands

nnnn or nn Represents a number. For one-byte numbers, nn is used. For
two-byte numbers, nnnn is used. (Two-byte numbers are
assembled into two's complement binary values. First comes the
least significant byte (LSB), then the most significant byte
(MSB)). A number may be any of these:

Decimal number

Hexadecimal number nnnnH or nnH. The suffix "tt" indicates
hexadecimal; if the number starts with A-F, prefix a O to it, as
in OFOH.

Octal number: nnnnnQ or nnno. The suffix "Q" or "o"
indicates octal.

27

SERIES I EDITOR/ASSEMBLER

Current address, "s" (The address in the program counter will
be used in place of the$).

Character constant: Any character inside single quotes. The
constant is converted into its ASCH character code. For example,
'A' is converted into 65.

Any numeric expression (see "Expressions").

Pseudo-Operations

ORG nnnn

(Originate) This sets the address reference counter. It determines where
subsequent z.so code and data will reside in memory. If no 0RG statement is
given in your source program, the address reference counter will be set to 0.

ORG should be used before any z.so instructions or data storage pseudo ops. It
may be repeated. The programs in this manual are 0RGed at decimal 32512
(hexadecimal 7Foo). All subsequent 0RG's are absolute.

symbol EQU nnnn or nn

(Equate) This assigns the value nnnn to the symbol. Each time the symbol is
used as an operand in the source program, the assembler will replace it with
nnnn. The EQU statement may appear anywhere in the program. A particular
symbol may be equated only once.

label DEFL nnnn

(Define label) This assigns a temporary value nnnn to the specified label. The
value may be changed as often as required within the source program.

END nnnn

This indicates the end of a source program. If there are any following lines in
the program, they will be ignored. The address mum sets the entry point to the
program. If omitted, the entry to TRSD0S (disk systems) or BASIC (cassette
systems) will be used. For details, see section 5.

[label] DEFB nn

This defines the contents of the current address to be nn. This pseudo op allows
you to initialize the contents of one-byte storage locations used by the program.
nn may be a one-byte value or a charncter string enclosed in single-quotes.

f labell DEFW nnnn

This defines the contents of the current two-byte address to be mmn. This
pseudo op allows you to initialize the contents of two-byte storage locations
used by the program.

[label] DEFS nn

(Define storage) This reserves nn bytes of memory, starting at the current
address. (The reference address will be incremented by nn before the next

28

USING THE ASSEMBLER

source statement is assembled.) This pseudo op allows you to reserve space for
buffers, parameters, etc.

[label] OEFM string

(Define message) This stores the specified string of characters, beginning at the
current address.

Assembler Commands
The ''LIST command allows you to suppress pa11s of a source listing. Error
messages and the offending source statements will still be listed. These
commands are very useful when you are debugging long programs, because the
parts of the program already corrected do not need to be listed. You may also
want to use them to suppress the listing of long tables of data contained in
programs (e.g., DEFM strings).

The asterisk (*) portion of the *LIST ON and *LIST OFF command must be in
column one.

*LIST OFF

Has no effect on the assembly, but turns off the assembly listing.

*LIST ON

Has no effect on the assembly, but turns the assembly on again (after ''UST OFF).

Using Expressions as Operands

The assembler will accept an expression in place of any numeric operand.
Expressions include symbols, numeric or string constants, and combinations
of these using the arithmetic and logical operators listed below.

+ and -

&

<

Addition and subtraction. Example:

LO HL 1l.lID+80H

Negation. Example:

LD HL1l,JIO-l
LO HL 1 - 1 (IZl understood)

Logical AND. Example:

LO A I (HU M:lFH

Shift left or right. This operator shifts a value right or left by a
specified number of bits, in this format:

value< nn

If ,m is negative, the value is shifted lo the right and zeroes fill on
the left. If nn is positive, the value is shifted lo the left and zeroes
fill on the right. Example:

LO A ,\,JAL< 2

29

SERIES I EDITOR/ASSEMBLER

Shifts the v AL two bits to the left and fills with zeroes on the
right.

The Z-80 Instruction Set
Section 6 is a full z-so instruction set. The z-so registers and flags available for
the programmer's use and a description of the z-so architecture is in Appendix F.

30

SAMPLE PROGRAMMING SESSION

Part Five:

Sample Programming Session
In this section, we'll take you step by step through the Series I Editor/
Assembler. Our goal will be to create a machine-language subroutine that may
be called from a BASIC program or the disk operating system of your computer.

The machine-language we'll present is simple but useful. Given a source
address, a destination address, and a length-value, it will copy a block of
memory into another area of memory. Doing this with normal BASIC statements
is slow. Doing this with machine-language is almost instantaneous.

Creating the Source Program

Start the Editor/Assembler as explained in Section 2. Then type I (ENTER) to get
into the line insertion mode. Now type in the following program, pressing
(ENTER) at the end of each line. (Remember to use TAB to space from the end of
one field to the start of the next field.)

00100 SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA
00110 ON ENTRY, <SRC> = SOURCE ADDRESS
00120 <DST> = DESTINATION ADDRESS
00130 (LEN) = NUMBER OF BYTES TO MOtJE
00140 ORG 32512
00150 MOtJE LD HL, (SRC) SOURCE ADDR,
00160 LD DE, <DST> DEST I NATI ON ADDR,
00170 LD BC, !LEN> LENGTH
00180 LDIR
00180 RET
00200 SRC DEFW 0
00210 DST DEFW 0
00220 LEN DEFW 0
00230 END MOVE

31

SERIES I EDITOR/ASSEMBLER

Press (B.fil.~ID to quit inserting. Then type P #:''' (E_Nlt8) to see the entire source
program. If there are any errors, use the edit rnode (E command) to correct
the line.

If you have a printer, you may get a hard copy of the text hy typing H #:*
l.EffffR).

Now we are ready to make a copy of the source program. We'll call it "MOVE."

Saving/Loading a Source Program (Tape Systen1s)
Using a blank cassette tape, get the recorder ready to record. Type l•J M0 1.IE
(ENTEB). Press (E'fl1EJ!) again when you arc ready to record. After the tape is
recorded, the Editor/Assembler will return in the command mode (asterisk). lt's
a good idea to make a second tape copy.

Now try reloading the program. Delete the text from memory by typing D #:*
Cf_tfltB). Then rewind the recorder, prepare it to play, and type L M0 1)E CENJIR1.
Press (I~TJ[m again when the recorder is ready to play. After the program has
been loaded. the Editor will return in the command mode. Ncl\v skip to the
paragraph titled, Trial Assembly.

Saving/Loading a Source Program (Disk Systems)

Type W M(H.1E litffER). After the file is written the Editor/Assembler will return
in the command mode (asterisk). The file will be called MOVE/SRC.

Now try reloading the source program. Delete the text from memory by typing
D #:* rmrtm. Then type L MOl.lE (~Jfi.tf.!J After !he source program has been
loaded, the Editor will return to the command mode, listing text and memory
contents.

Trial Assembly

Now we are ready to see if the program can be assembled without en-ors. We'll
use the NO (no output) and WE (wait on e!Tors) S\vitches for this purpose.

The source prograrn should be in n1e1nory. Type 11 ,NO ,lsiE i..ERfIR), The Editor/
Assembler will put the assembly listing on the screen. If any errors are found,
the listing will be paused. An error message will appear directly above the
offending line. Press any key to continue.

ff any assembly errors were found, use the edit mode !o correct i.hern, and try
another trial assembly.

lf you have a printer, you rnay request a hard copy of ihe assembly listmg. This
will be preferable to the display listing, since most listings require more than 64
columns per line. "Ib output to the printer, type: A ,NO ,LP C~NTIID.
Figure J shows the assembly listing generated by our sarnple program. We've
added caHouts to identify the various fields in the listing,

32

SAMPLE PROGRAMMING SESSION

Memory
Loe.

Object
Code

line
Number label Mnemonic Opernnd(s)

1110100
001111)
001211)
001311)
11)(1) 1411)

1110150
011118111
111017111
111111180
011118111
1110200
11)0210
00220
00230

SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA
ON ENTRY, (SRCJ = SOURCE ADDRESS

7F1110
7F00 2A0E7F
7F03 ED5B107F
7F07 ED4B127F
7F05 ED50
7F0D C8
7F0E 000111
7F10 111111111111
7Fi2 011100
7F1110
1110000 Total Errors

LEN 7F12
DST 7F10
SRC 7F0E
M1WE 7F11111l

Symbol Table

Figure 1. Sample Assembl_v Listing

MOI.JE

SRC
DST
LEN

IDSTl = DESTINATION ADDRESS
ILENJ NUMBER OF BYTES TO MOUE
ORG
L.D
L.D
LD
LDIR
RET
DEFW
DEF~i
DEFl·l
END

32.512
HL , (SG:C)
DEdDSTJ
BC,(LEN)

Here are a few comments on the source program (line references are to column
3 of the listing):

Line 140 sets the origination address of the program. We've chosen an address
near the top of memory in a 16K RAM system. If you change this address. be sure
to make the appropriate changes in the BASIC calling program (presented

Line 230 ends the program. Since we gave an operand (MOVE), the Editor/
Assembler will store the value of MOVE as the entry address to the program. lf
we had omitted an operand here, the entry address to the program would have
been set to address ooooH. (More later.)

Object Code Output

After confirming that the program can be assernbled ,vithout eITors, we arc
ready to create the object file on tape or disk. We' l! use an assemble cmnrnand
that outputs object code only

SOURCE 1\t)Dfl ,,
DESTINATION ADDF
LENGTH

33

SERIES I EDITOR/ASSEMBLER

Tape Systems

Using a blank tape, prepare the recorder to record. Type A M0 1,JE 1NL ,NS ([Ntrn).
Press (ENTER) again when ready. The Editor/ Assembler will write out the object
tape. It's a good idea to repeat this process to get a second tape copy.

Disk Systems

Type A MOt,JE ,NL ,NS (ENTER). The Editor/Assembler will create an object file
named MOVE/CMD.

Running the Sample Program

Our sample program, MOVE, may be executed as a BASIC subroutine or as an
independent program.

First. we'll try it as a BASIC subroutine.

Tape Systenzs (Level II and Mod III only-- will not execute in a
Level I machine)

Start BASIC and answer the MEMORY SIZE question by typing 3251 I cm.IT.ID. This
will keep BASIC from using the area where the subroutine will reside.

Now load the subroutine:

Type SYSTEM ®'JIE.BJ. Prepare the recorder to play the object tape, then type
MOVE (fNJJR). After the program has been loaded, the*? will return. Press
(BREAK) to return to BASIC. Now type in the BASIC program given in Listing # 1.
(Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copies will be the
length value.

Disk Systems

Start TRSDOS. Under TRSDOS READY, load the subroutine by typing LOAD
MOl.JE/CMD.

Statt BASIC. Answer the MEMORY SIZE question by typing 32511 mtrJ .. BJ. This
will keep BASIC from using the memory where MOVE resides.

Now type in the program given in Listing 2. (Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from I to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copied will be the
length value.

34

SAMPLE PROGRAMMING SESSION

Executing a Machine-Language Program Directly

MOVE is a subroutine called from a BASIC program. However, you can also
execute machine-language programs created with the Editor/Assembler.

Disk System$

Under TRSDOS READY, type in the program name and press (ENTER). The program
will be loaded and executed, starting at the address specified in the END
statement of the original source listing (e.g., line 230 of our sample program).
Don't use our sample program this way; it was designed to be called from
BASIC only.

Tape Systems (Level II and Mod III BASIC)

Load the program using the SYSTEM command, as explained previously. After
the program has been I oaded from tape, the *? will reappear. Don't press
(ENTER). Press/ (ENTER) instead. The Computer will begin executing the program
at the address specified in the END statement of the original source listing (e.g.,
line 230 of our sample program).

Alternatively, you may type / add res s (JNTER) to override this entry address.

(Don't try this with MOVE; that subroutine should only be called from a BASIC
program like the one we presented.)

Tape Systems (Level I users)

You may load the program using the Level I 'System Loader' tape that came
with your EDTASM. This is accomplished by typing CLOAD. A prompt
"CASSETTE READY" will appear on the screen. When the tape is ready to load
press (ENTER). Your object program will load at this time. The Computer will
begin executing your program at the address specified in the END statement.

You may write your own "System Loader" and put it at the beginning of each
Level I program. (Refer to Appendix B) Tapes loaded into Level I with the
·•System Loader'' must be ORGed above 4500H and be created by EDTASM.

10 POKE 16526,0: POKE 16527 d 27
20 SRC :: 32526
30 DST = 32528
40 LN = 32530
50 CLS
60 INPUT "SOURCE"i s
70 INPUT "DESTINATION"; D
80 INPUT "LEN" i L
80 IF (0<15360) OR 10>16383) THEN 230
100 VL = S: MM= SRC: GOSUB 190
110 IF ID< 15360) OR (0 > 18383 l THEN 230
120 IF D+L > 18384 THEN 240
130 VL = D: MM= OST: GOSUB 190
140 VL = L: MM= LN: GOSUB 180

35

SERIES I EDITOR/ASSEMBLER

150 >(= USR (0)

160 IF INKEYS="" THEN 180
170 GOTO 50
180 'BREAK NUMBER INTO MSB, LSB
190 MS%= VL/256: LS%= VL - IMS%* 258)
200 'PUT DATA INTO MEMORY
210 POKE MM, LS%: POKE MM+l I MS%
220 RETURN
230 PRINT "INl,!ALID DESTINATION": STOP
240 PRINT "DATA BLOCK EXCEEDS END OF VIDEO RAM": STOP

Listing #1.

10 DEFUSR = &H7F00
20 SRC = &,H7F0E
30 DST = &,H7F 10
40 LN = &,H7F 12
50 CLS
60 INPUT "SOURCE"; s
70 INPUT "DESTINATION"i D
80 INPUT "LEN"; L
80 IF (0<15360) OR (D > 18383 l THEN 230
100 VL = S: MM= SRC: GOSUB 180
110 IF (0<15380) OR <0>18383) THEN 230
120 IF D+L > 16384 THEN 240
130 VL = D: MM= DST: GOSUB 180
140 Vl = L: MM= LN: GOSUB 180
150){ = USR (0 l
160 IF INKEYS="" THEN 160
170 GOTO 50
180 'BREAK NUMBER INTO MSB, LSB
180 MS%= VL/256: LS%= Vl - <MS%* 258)
200 'PUT DATA INTO MEMORY
210 POKE MM, LS%: POKE MM+l, MS%
220 RETURN
230 PRINT "IN1,JALID DESTINATION": STOP
240 PRINT "DATA BLOCK EXCEEDS END OF VIDEO RAM": STOP

Listing #2.

36

THE Z-80 INSTRUCTION SET

Part Six:

The Z-80 Instruction Set
Notation and Other Conventions
This section includes a detailed description of all the z-so assembly language
instructions. The first line of each of these pages shows the assembly language
opcode mnemonic followed by its operand(s). Some instructions have no
operands at all. Other instructions have one or two operands. Anything which
is capitalized should be copied exactly when you use the editor to write the
assembly language source code. Anything shown in lowercase letters will be
replaced by an appropriate register, number, or label. For example, the first
instruction described in the eight-bit load group is:

LO r,r'

LD is the mnemonic for the Load instruction. Jf you wish to move the contents
of register H into register A, the actual source code is

LDA,H

This should be read as ''load register A with the contents of register H .''

A detailed explanation of the operand notation is given below, but in general
you should note that single lowercase letters are used for eight-bit numbers or
registers and double lowercase letters are used for 16-bit numbers or registers.
Also note that parentheses around a register pair indicates that the register pair is
to be used as a pointer to a memory location. For example, the instruction INC

HL means that 1 is to be added to the HL register pair. The instruction INC (HL)
means that I will be added to a number in memory whose address is found in
register pair HL.

Symbol

r

Symbol

qq
ss
dd
pp
rr

Specifies one of the registers
A, B, C, D. E, H. or L.

Specifies a register pair

BC, DE, HL, or AF

BC, DE, HL. or SP

BC, DE, !IL, or SP

BC, DE, IX, or SP

13C, DE, IX, or SP

37

SERIES I EDITOR/ASSEMBLER

Symbol
n
nn
d
e

Symbol
s
m
(nn)
b
cc

Specifies a number or symbol in the range
0 to 255 (one byte)
0 to 65535 (two bytes)
- 128 to 127 (one byte)
-126 to 129 (one byte)

Specifies arty of the foil owing
r, n, (HL), (IX+d), or (IY+d)
r, (HL) (IX+d), or (IY+d)
Specifies the contents of memory location nn
Specifies an expression in the range (0, 7)
Specifies the state of the Flags for conditional JR, JP, CALL and
RET instructions

Instruction Format Examples With Explanation

Format Example 1

LD r,(HL)
Operation: r ¢ (HL)
This is the shorthand description of the instruction. The arrow indicates that data
is moved into register r.

When you write the assembly language code, the lowercase r will be replaced
by A, B, C, D, E, Hor L.

Format:

Mnemonic: LD Operands: r,(HL)

Object Code:

The object code for this instruction is one byte long. To figure out the object
code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For
example:

Source Code
LD A,(HL)
LD B,(HL)
LD C,(HL)

38

Object Code
01111110
01000110
01001110

THE Z-80 INSTRUCTION SET

This instruction uses two machine (M) cycles. The first machine cycle consists
of four timing (T) states and the second machine cycle consists of three T states
for a total of seven T states. In the TRS-80 one T state takes .5636714
microseconds because the clock speed is 1. 774038 MHz, for Model l, 4 MHz
for Model Hand 2.02752 MHz for Model III. The execution time (E.T.), in
microseconds, is calculated for the TRS-80. (One microsecond is 10 6 seconds
or 1/1,000,000 of a second.)

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, Hor L, assembled as follows in the object
code:

Register r
A 111
B = 000
C 001
D = 010
E 011
H 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz ET.: 1.75

If register pair HL contains the number 75A IH, and memory address 75 AlH
contains the byte 58H, the execution of

LD C, (HL)

will result in 58H in register C.

Format Example 2

JP cc,nn
Operation: IF cc TRUE, PC¢nn
The jump is made only if the condition cc is true. The arrow indicates that the
number nn is moved into the program counter PC. This will cause the program
to jump to address nn.

When you write the assembly language code, cc will be replaced by one of the
following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number
from O to 65535 or a label.

39

SERIES I EDITOR/ASSEMBLER

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

I
I .1 I ') 1 () Ii I CC CC CC , l
l ___ L_. __ ~1 __ --~~--L·m·-·- l

r---
i n n n n n

I I
n n 1 n

I i l
___.~__.L---'--·\·-·--·-·-J

Not.e: The first n operand in this assembled ob,iert code is the low order byte of
a two-byte memory address.

The object code for this instruct.ion is three bytes long. Tb figure out the object
code. replace bi.ts 3, 4 and 5 of the first byte with the appropriate number from
the tabie .. The second two bytes of the object code are the address being jumped
to. For example:

Source Code

JP NZ. 0PH%H-{

ID ..• , l\1, 1002H

Object Code

1 H)(11ilV1 H) C2H
,,00~>0H0,1 li)O H
l 1 I l l 111 FFH
Ill!H)l(I)
0t,)(1}(•)@lJ l (IJ

000 l (l)(),}(I)

FAH
(1)2H
Hm

Note that the low order, or right hand byte, of the address comes first in the
object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counrer is im::remented as
usual, and the program continues with the next sequential instruction. Condition
cc is prognunmcd as one of eight status bits which correspond lo condition bits
in the Flag Register (register F). 'fhese eight status bits are defined in the table
below \vhil'.11 also specifies the corresponding cc bit fields in the assembled
object cock.

The Relevant Flag column shows the value the flag 1nust have if the jump is to
occur.

40

THE Z-80 INSTRUCTION SET

Relevant
cc Condition J:i~lag

000 NZ non zero z - 0
0(7)1 Z zero z -- 1
010 NC no carry C - 0
~)l l C carry C -·- l
100 PO parity odd or no overflow P/V - {1

101 PE parity even or overflow P/V = 1
110 P sign positive s -- 0
11 l ~1 sign negative s - 1

M cycles: 3 T states: l 0(4,3,3) 4 MHz E.T: 2.50

Condition Bits Affected: None

Example:

lf the Carry Flag (C flag in the F register) is set and the contents of address 1520
are ~BH, after the execution of

JP C.152(7JH

the Program Counter will contain 1520H, and on the next machine cycle the
CPU will fetch from address l5WH the byte 03H. In other words, program
execution jumps to the instruction at 1520H.

Format Example 3

CPIR
Operation: A - (HL), HL ¢ HL + 1, BC Q BC -1
The shorthand description indicates that three different things are happening:

1. BC is decremented

2. HL is incremented

3. A byte in memory is subtracted ft\Hn the A register (but the results are not
saved).

Format:

Mnemonic: CPIR Operands:

41

SERIES I EDITOR/ASSEMBLER

Object Code:

I 1 : 1
:

1 : 0 : 1 : 1 : 0 : 1 I ED

I 1 : o : 1 : 1 : O : 0 : 0 : 1 I Bl

The assembly language instruction has no operands.

The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to go to zero or if
A= (HL), the instruction is terminated. If BC is not zero and A::/= (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC::/= 0 and A::/= (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

For BC=0 or A=(HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

The total execution time of this instruction depends on how long it takes to find
the byte being searched for and the length of the block being searched. If the
instruction loops three times before BC= 0 or A= (HL), then there will be 58
(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if BC becomes zero; reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 111 lH, the Accumulator contains F3H, the Byte
Counter contains 0007H, and memory locations have these contents:

(111 lH) 52H
(1112H) 00H
(1113H) F3H

42

THE Z-80 INSTRUCTION SET

then after the execution of

CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter
will be 0004H. Since BC =I= 0, the P/V flag is still set. This means that it did not
search through the whole block before the instruction stopped. Since a match
was found, th'e Z flag is set.

The CPIR instruction will affect five of the six condition codes.

43

THE Z-80 INSTRUCTION SET

Z-80 Instruction Set
Table of Contents

8 Bit Load Group . 47
16 Bit Load Group . 65
Exchange, Block Transfer
and Search Group . 87
8 Bit Arithmetic and Logical Group 105
General Purpose Arithmetic
and CPU Control Groups ... 135
16 Bit Arithmetic Group .. 141
Rotate and Shift Group ... 151
Bit Set, Reset
and 1est Group ... 177
Jump Group ... l 89
Call and Return Group ... 201
Input and Output Group .. 211

45

8 BIT LOAD GROUP

8 Bit Load Group

LD r,r' LoaD

Operation: r ¢ r'

Format:

Mnemonic: LD Operands: r, r'

Object Code:

Description:

The contents of any register r' are loaded into any other register r. Note: r, r'
identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in
the object code:

Register r, r'

A = 111
B 000
C 001
D 010
E = 011
H = 100
L 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.0

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the
instruction

LD H,E

would result in both registers containing 10H.

47

SERIES I EDITOR/ASSEMBLER

LD r,n
Operation: r ¢ n

Format:

Mnemonic: LD

Object Code:

Operands: r, n

Jo:o:r:r:r:1:1:oJ

Jn:n:n:n:n:n:n:nJ

Description:

LoaD

The eight-bit integer n is loaded into any register r, where r identifies register A,
B, C, D, E, Hor L, assembled as follows in the object code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example 1:

After the execution of

LD E,A5H

4 MHz E.T.: 1.75

the contents of register E will be ASH.

Example 2:

After the execution of

LD A,0

register A will contain zero.

48

8 BIT LOAD GROUP

LD r,(HL) LoaD

Operation: r ¢ (HL)

Format:

Mnemonic: LO Operands: r, (HL)

Object Code:
r ----~-~7
!O r r r ,OI L_: .. ~~-~-~-~~---' ______ J

Description:

The eight-bit contents of memory location (HL) art~ loaded into register r, where
r identifies register A, B, C, D, E, Hor L, assembled as follows in the object
code:

Register r

A - l 11
B = 000
C -·- 0(11
D = 010
E -· 011
H = J(,)0
L = l 01

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If register pair HL contains the number 75AIH, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)

will result in 58H in register C

LD r,(IX + d) LoaD

Operation: r ¢(IX+ d)

Format:

Mnemoni.c: LD Operands: r, (IX + d)

49

SERIES I EDITOR/ASSEMBLER

Object Code:

/1;1;0;1;1;1;0;1/

/0:1:r:r:r:1:1;0/

,d:d:d:d:d:d:d:d,

Description:

DD

The operand (IX+ d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r, where r identifies register A, B,
C, D, E, Hor L, assembled as follows in the object code:

Register r

A 111
B = 000
C = 001
D 010
E 011
H 100
L 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction

LD B,(IX + 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in
memory this program will load the first four bytes of the table into registers A,
B, C and D.

LD
LD
LD
LD
LD

50

IX, TABL
A, (IX+0)
B, (IX+ 1)
C, (IX+2)
D, (IX+3)

; IX points to the table
; Load first byte
; Load second byte
; Load third byte
; Load fourth byte

8 BIT LOAD GROUP

LD r,(IY + d) LoaD

Operation: r ¢ (IY + d)

Format:

Mnemonic: LD Operands: r, (IY + d)

Object Code:

I : 1 : : : : : 0 : I FD

[o: :r:r:r: : :o\

I d : d : d : d : d : d : d : d I

Description:

The operand (IY + d) (the contents of the Index Register IY summed with a
two's complement displacement integer d) is loaded into register r, where r
identifies register A, B, C, D, E, H, or L, assembled as follows in the object
code:

Register r

A l 11
B 000
C 001
D 010
E 011
H 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the Index Register I Y contains the number 25AFH, the instruction

LD B,([Y + 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

51

SERIES I EDITOR/ASSEMBLER

LD (HL),r LoaD

Operation: (HL) ¢ r

Format:

Mnemonic: LD Operands: (HL), r

Object Code:

Description:

The contents of register r are loaded into the memory location specified by the
contents of the HL register pair. The symbol r identifies register A, B, C, D, E,
H or L, assembled as follows in the object code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LD (HL),B

memory address 2146H will also contain 29H.

LD (IX +d),r LoaD

Operation: (IX + d) ¢ r

Format:

Mnemonic: LD Operands: (IX+ d), r

52

8 BIT LOAD GROUP

Object Code:

I : 1 : 0 : : : : 0 : I DD

[o: : :1:0:r:r:r\

I d : d : d : d : d : d : d : d I

Description:

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d. a two's complement displacement
integer. The symbol r identifies register A, B, C, D, E, Hor L, assembled as
follows in the object code:

Register r

A = 111
B 000
C 001
D 0m
E = 011
H = 100
L = 101

M cycles: 5 T states: !9(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the C register contains the byte lCH, and the Index Register IX contains
3100H, then the instruction

LD (IX+ 6H), C

will perform the sum 3100H r 6H and will load lCH into memory location
3106H.

LD (IY +d),r LoaD

Operation: (IY + d) ¢ r

Format:

Mnemonic: LD Operands: (lY+ d), r

53

SERIES I EDITOR/ASSEMBLER

Object Code:

I l : : 1 : : : : 0 : I FD

lo: : : :o:r:r:rJ

I d : d : d : d : d : d : d : d I

Description:

The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register IY and d, a two's complement
displacement integer. The symbol r is specified according to the following table.

Register

A
B
C
D
E
H
L

M cycles: 5

r
Ill
000
001
010
011
100
101

T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the C register contains the byte 48H, and the Index Register lY contains
2Al lH, then the instruction

LD (IY+4H),C

will perform the sum 2Al lH + 4H, and will load 48H into memory location
2Al5.

LD (HL),n LoaD

Operation: (HL) ¢ n

.Format:

Mnemonic: LD Operands: (HL), n

54

8 BIT LOAD GROUP

Object Code:

Jo:0:1:1:0:1:1:ol

Jn:n:n:n:n:n:n:nl

Description:

36

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction

LD (HL),28H

will result in the memory location 4444H containing the byte 28H.

LD (IX +d),n
Operation: (IX+ d) ¢ n

Format:

Mnemonic: LD Operands: (IX + d), n

Object Code:

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

1 o : o : 1 : 1 : o : 1 : 1 : o 1 36

1d:d:d:d:d:d:d:d1

I n : n : n : n :-n : n : n : n I

Load

55

SERIES I EDITOR/ASSEMBLER

Description:

The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two's complement displacement
operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction

LD (IX+ 5H),5AH

would result in the byte 5AH in the memory address 219FH.
(219FH = 219AH + 5H.)

LD (IY +d),n
Operation: (IV+ d) ¢ n

Format:

Mnemonic: LD Operands: (IY + d), n

Object Code:

J1:1:1:1:1:1:o:11 FD

1 o : o : 1 : 1 : o : 1 : 1 : o 1 36

1d:d:d:d:d:d:d:d1

ln:n:n:n:n:n:n:nl

Description:

LoaD

Integer n is loaded into the memory location specified by the contents of the
Index Register summed with a two's complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

56

8 BIT LOAD GROUP

Example:

If the Index Register IY contains the number A940H, the instruction

LD (IY + 10H),97H

would result in byte 97H in memory location A950H.

LD A,(BC)
Operation: A¢ (BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:

0A

Description:

LoaD

The contents of the memory location specified by the contents of the BC register
pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the BC register pair contains the number 4747H, and memory address 4747H
contains the byte 12H, then the instruction

LD A,(BC)

will result in byte 12H in register A.

LD A,(DE) LoaD

Operation: A¢ (DE)

Format:

Mnemonic: LD Operands: A, (DE)

57

SERIES I EDITOR/ASSEMBLER

Object Code:

lA

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,(DE)

will result in byte 22H in register A.

LD A,(nn)
Operation: A¢ (nn)

Format:

Mnemonic: LD Operands: A, (nn)

Object Code:

I O : 0 : 1 : 1 : 1 : 0 : 1 : 0 I 3A

Jn:n:n:n:n:n:n:nJ

ln:n:n:n:n:n:n:nJ

Description:

LoaD

The contents of the memory location specified by the operands nn are loaded
into the Accumulator. The first n operand is the low order byte of a two-byte
memory address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

58

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction

LD A,(8832H)

byte 04H will be in the Accumulator.

LD (BC),A LoaD

Operation: (BC) ¢A

Format:

Mnemonic: LD Operands: (BC), A

Object Code:

1 o : o : o : o : o : o : 1 : o 1
02

Description:

The contents of the Accumulator are loaded into the memory location specified
by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the Accumulator contains 7 AH and the BC register pair contains 1212H the
instruction

LD (BC),A

will result in 7AH being in memory location 1212H.

LD (DE),A LoaD

Operation: (DE) ¢ A

Format:

Mnemonic: LD Operands: (DE), A

59

SERIES I EDITOR/ASSEMBLER

Object Code:

0 0 l 0 12

Description:

The contents of the Accumulator are loaded into the memory location specified
by the DE register pair.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
A0H, the instruction

LD (DE),A

will result in A0H being in me111ory location 1128H.

LO (nn),A
Operation: (nn) ¢A

Format:

Mnemonic: LD Operands: (nn), A

Object Code:

I O : 0 : 1 : l : 0 : 0 : : 0 I 32

\ n : n : n : n : n : n : n : n \

ln'.n'.n'.n: n:n:n '.nl

Description:

LoaD

The contents of the Accumulator are loaded into the memory address specified
by the operands nn. The first n operand in the assembled object code above is
the low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

60

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of

LD (314IH),A

D7H will be in memory location 3141H.

LD A,I
Operation: A Q I

.Format:

Mnemonic: LD

Object Code:

0

0 0 1 0

Description:

Operands: A, I

l O ED

57

LoaD

The contents of the Inte1Tupt Vector Register I are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero: reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag
will contain a 0.

Example:

If the lntermpt Vector Register contains the byte 4AH, after the execution of

LD AJ

the accumulator will also contain 4AH.

61

SERIES I EDITOR/ASSEMBLER

LDA,R LoaD

Operation: A¢ R

Format:

Mnemonic: LD Operands: A, R

Object Code:

!1:1:1:0:1:1:0:11 ED

I O : 1 : 0 : 1 : 1 : 1 : 1 : 1 I SF

Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of

· LD A,R

the Accumulator will also contain 4AH.

LD l,A LoaD

Operation: I ¢ A

Format:

Mnemonic: LD Operands: I, A

62

8 BIT LOAD GROUP

I : : 1 : 0 : : : 0 : I ED

I o : : o : o : o : : : I 47

Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector
Register, I.

M cycles: 2 T states: 9(4,5)

Condition Bits Affected: None

Example:

4 MHz E.T.: 2.25

If the Accumulator contains the number 8 IH, after the instruction

LD I,A

the Interrupt Vector Register will also contain 8 IH.

LO R,A
Operation: R ¢ A

Format:

Mnemonic: LD Operands: R, A

Object Code:

I 1 : : : 0 : : : 0 : I ED

I O : : 0 : 0 : : : : I 4F

Description:

LoaD

The contents of the Accumulator are loaded into the Memory Refresh register R.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

63

SERIES I EDITOR/ ASSEMBLER

Example:

If the Accumulator contains the number B4H, after the instruction

LD R,A

the Memory Refresh Register will also contain B4H.

64

16 BIT LOAD GROUP

16 Bit Load Group
LD dd,nn
Operation: dd ¢ nn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

I O : 0 : d : d : 0 : 0 : 0 : I I

ln:n:n:n:n:n:n:nJ

ln:n:n:n:n:n:n:nl

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

Example:

After the execution of

LD HL,5000H

4 MHz E.T.: 2.50

the contents of the HL register pair will be 5000H.

LoaD

65

SERIES I EDITOR/ ASSEMBLER

After the execution of

LD BC,2501H

the BC register will contain 2501 H.

LD IX,nn
Operation: IX¢ nn

Format:

Mnemonic: LD Operands: IX, nn

Object Code:

I : : 0: : : : 0: I DD

I o : o : : o : o : o : o : I 21

I n : n : n : n : n : n : n : n I

I n : n : n : n : n : n : n : n I

Description:

Integer nn is loaded into the Index Register TX. The first n operand in the
assembled object code above is the low order byte,

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

the Index Register will contain integer 45A2H.

66

LoaD

16 Brr LOAD GROUP

LO IY,nn
Operation: IV¢ nn

Format:

Mnemonic: LD

Object Code:
r--·

I 1
L

Operands: IY, nn

0 0 0 0 0 0 li
'-----'---'--'---'---'--'---'--_J

I ' ---·T

l~n~-n~_n -~J. __ n_. ~1_1 ~1_1 ~-n~J
r--~----~--! ---r-·-~--r--·-7
! I

l~n~-n~-n~_r_i ~n~_n_i~~--J~_ I

Description:

FD

21

integer nn is loaded into ihe Index Register IY. The first n operand in the
assembled object code above is the !ow order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction:

LD IY,7733H

the Index Register lY will contain the integer 77331L

LD HL,(nn)
Operation: H ¢ (nn + 1), L ¢ (nn)

Format:

Mnemonic: LD Operands: BL, (nn)

LoaD

LoaD

67

SERIES I EDITOR/ ASSEMBLER

Object Code:

Jo'.o'.1:0: '.o: '.ol 2A

I n : n : n : n : n n : n : n I

I n : n : n : n : n : 11 : 11 : 11j

Description:

The contents of memory address nn are loaded into the low order portion of
register pair HL (register L), and the contents of the next highest memory
address (nn + l) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz ET: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains A IH, after the
instruction
LD HL,(4545H)

the HL register pair will contain A137H.

LO dd,(nn)
Operation: ddH¢(nn + 1), ddL ¢(nn)

Format:

Mnemonic: LD Operands: dd, (nn)

Object Code:

I : : >< : >< I

jo: '.d'.d'.1'.<< : I

ln:11 :11: n:n:n:n'.n\

ln:n:n:n:n:n:n '.nl

68

ED

LoaD

16 BIT LOAD GROUP

Description:

The contents of address nn are loaded into the low order portion of register pair
dd, and the contents of the next highest memory address (nn + 1) are loaded
into the high order portion of dd. Register pair dd defines BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above is the low order byte of
(nn).

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the
instruction

LD BC,(2130H)

the BC register pair will contain 7865H.

Example 2:

If address FFFE contains 01H and address FFFF contains 02H, then after the
instruction

LD SP,(0FFFEH)

the SP will contain 0201H.

LD IX,(nn) LoaD

Operation: IXH¢(nn+1), IXL¢(nn)

Format:

Mnemonic: LO Operands: IX, (nn)

69

SERIES I EDITOR/ ASSEMBLER

Object Code:

!1:1:0:1:1:1:0:11

Jo:o: 1 :o: 1 :o: 1 :oJ

ln:n:n:n:n:n:n:nJ

ln:n:n:n:n:n:n:nJ

Description:

DD

2A

The contents of the address nn are loaded into the low order portion of Index
Register IX, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IX. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the
instruction

LD IX,(6066H)

the Index Register IX will contain DA92H.

LD IY,(nn) LoaD

Operation: IYH ¢ (nn + 1), IYL ¢ (nn)

Format:

Mnemonic: LD Operands: IY, (nn)

70

16 BIT LOAD GROUP

Object Code:

I : l : : : : : 0 : I FD

io:o: :o: :o ;oJ 2A

I n : n : n : n : n : n : n : n I

Description:

The contents of address nn are loaded into the low order portion of Index
Register 1 Y, and the contents of the next highest memory address (nn + l) are
loaded into the high order portion of IY. The first 11 operand in the assembled
object code above is the low order byte of 1111.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5 .00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the
instruction

LD IY,(6666H)

the Index Register IY will contain DA92H.

LD (nn),HL LoaD

Operation: (nn + 1) ¢ H, (nn) ¢ L

J<'ormat:

Mnemonic: LO Operands: (nn), HL

71

SERIES I EDITOR/ ASSEMBLER

Object Code:

io;o; 1 ;o;o;o; 1 ;ol

Jn:n:n:n:n:n:n:nJ

ln'.n:n:n:n:n:n:nl

Description:

22

The contents of the low order portion of register pair HL (register L) are loaded
into memory address nn, and the contents of the high order portion of HL
(register H) are loaded into the next highest memory address (nn + 1). The first
n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction

LD (B229H),HL

address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL contains 504AH, then after the instruction

LD (PLACE),HL

the address PLACE will contain 4AH and address PLACE+ 1 will contain 50H.

Note: PLACE is a label which must be defined elsewhere in the program.

LO (nn),dd LoaD

Operation: (nn + 1) ¢ddH, (nn) ¢ddL

Format:

Mnemonic: LD Operands: (nn), dd

72

16 BIT LOAD GROUP

Object Code:

I l : 1 : : 0 : : : 0 : I

Jo:1 d:ct:o'.o'. j

I n : n : n : n : n : n : n : n I

Jn:n:n:n :n:n: n nl

Description:

ED

The low order byte of register pair dd is loaded into memory address (nn); the
upper order byte is loaded into memory address (nn + l). Register pair dd
defines either BC, DE, HL, or SP, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP l 1

The first n operand in the assembled object code is the low order byte of a two
byte memory address.

M cycles: 6 T states: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 5j)0

If register pair BC contains the number 4644H, the instruction

LD (1000H),BC

will result in 44H in memory location 1000H, and 461-I in memory
location 100 lH.

LD (nn),IX
Operation: (nn + 1) ¢ IXH, (nn) ¢ IXL

Format:

Mnemonic: LD Operands: (nn), JX

LoaD

73

SERIES I EDITOR/ ASSEMBLER

Object Code:

[n:n:n:n:n:n: n: n[

I n : n : n : n : n : n : n : n I

Description:

The low order byte in Index Register IX is loaded into memory address nn; the
upper order byte is loaded into the next highest address (nn + I). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the instruction

LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will
contain SAH.

LD (nn),IY LoaD

Operation: (nn + 1) ¢ IYH, (nn) ¢ IYL

Format:

Mnemonic: LD Operands: (nn). IY

74

16 BIT LOAD GROUP

Object Code:

I l : 1 : l : : : : 0 : I

!o:o: :o:o o; ;oJ

I n : n : n : n : n : n n : n I

I n : n : n : n : n : n : n : n I

Description:

FD

22

The low order byte in Index Register IY is loaded into memory address nn; the
upper order byte is loaded into memory location (nn + l). The first n operand in
the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 2()(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 5.{1(,)

If the Index Register [Y contains 4174H after the instruction

LD 8838HJY

memory location 8838H will contain number 74H and memory location 8839H
will contain 4 LH.

LD SP,HL LoaD

Operation: SP¢ HL

Format:

Mnemonic: LD Operands: SP, HL

Object Code:

I : : : : : 0 : 0 : I F9

Description:

The contents of the register pair HL arc loaded into the Stack Pointer SP.

75

SERIES I EDITOR/ ASSEMBLER

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

LD SP,IX
Operation: SP¢ IX

Format:

Mnemonic: LD Operands: SP, IX

Object Code:

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

11:1:1:1:1:0:0:11 F9

Description:

LoaD

The two-byte contents of Index Register IX are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction

LD SP,IX

the contents of the Stack Pointer will also be 98DAH.

76

16 BIT LOAD GROUP

LO SP,IY LoaD

Operation: SP¢ iY

Format:

Mnemonic: LD Operands: SP, IY

Object Code:

·1 I
I l
i

·--,-----T-----,----- ----,--·-·7
1

' l I , 1 1 0 , I i
i

FD

r-+"
! l O 0
~~~-~~t-~----~_j_·-----·~-~I -~ 

F9 

Description: 

The two byle contents of Index Register IY are loaded into the Stack Pointer SP. 

M cycles: 2 T states: 10(4,6) 4 MHz ET: 2.50 

Condition Bits Affected; None 

Example: 

ff Index Register IY contains the integer A227H, after the instruction 

LD SP 

the Stack Pointer vvi1I also contain A227H. 

PUSH qq 
Operation: (SP -2) ¢qqL, (SP·-· 1) QqqH 

Format: 

Mnemonic: Operands: qq 

Object Code: 

q 0 0 

77 



SERIES I EDITOR/ ASSEMBLER 

Description: 

The contents of the register pair qq are pushed into the external memory LIFO 
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit 
address of the cmTent ''top'' of the Stack. This instruction first decrements the 
SP and loads the high order byte of register pair qq into the memory address 
now specified by the SP, then decrements the SP again and loads the low order 

of qq into the memory location corresponding to this new address in the 
SP. The operand qq means register pair BC, DE, HL, or AF, assembled as 
follows in the code: 

Pair qq 

BC 0Jv1 
DE v)l 
HL rn 
AF 11 

M 3 T states: I !(5,3,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 2.75 

If the AF register pair contains 2233H and the Stack Pointer contains 1007H, 
after the instruction 

PUSH AF 

memory address lv)06H will contain 22H, memory address l005H will contain 
33H, and the Stack Pointer will contain 1005H. In other words the number from 
register pair AF is now on the top of the stack, and the stack pointer is pointing 
to it. 

Before: 

Register AF 
2233 

Stack Pointer 
1007 

After: PUSH 

Register Af' 

Stack Pointer 
1005 

78 

Address 
1007 
1008 

AF 

Address 

1005 

Stack 
FF 

Stack ~-. j_, 

1006 n 
1007 FF 
l008 35 



16 BIT LOAD GROUP 

PUSH IX 
Operation: (SP - 2) ¢ IXL, (SP - 1) ¢ IXH 

Format: 

Mnemonic: PUSH Operands: IX 

Object Code: 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

11:1:1:0:0:1:0:11 E5 

Description: 

The contents of the Index Register IX are pushed into the external memory 
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 
16-bit address of the current "top" of the Stack. This instruction first 
decrements the SP and loads the high order byte of IX into the memory address 
now specified by the SP, then decrements the SP again and loads the low order 
byte into the memory location corresponding to this new address in the SP. 

M cycles: 3 T states: 15(4,5,3,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 3.75 

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H, 
after the instruction 

PUSH IX 

memory address 1006H will contain 22H, memory address 1005H will contain 
33H, and the Stack Pointer will contain 1005H. The number from the IX 
register pair is now on the top of the stack. 

Before: 

Register IX 
2233 

Stack Pointer 
1007 

Address 
1007 
1008 

Stack 
FF 
35 

79 



SERIES I EDITOR/ ASSEMBLER 

After: PUSH 

Register IX 
2233 

Stack Pointer 
1005 

IX 

Address 
1005 
1006 
1007 
1008 

PUSHIY 

Stack 
33 
22 
FF 
35 

Operation: (SP-2) ¢ IYL, (SP-1) ¢ IYH 

Format: 

Mnemonic: PUSH Operands: IY 

Object Code: 

11:1:1:1:1:1:0:11 

11:1:1:0:0:1:0:11 

Description: 

FD 

ES 

The contents of the Index Register IY are pushed into the external memory 
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 
16-bit address of the current "top" of the Stack. This instruction first 
decrements the SP and loads the high order byte of IY into the memory address 
now specified by the SP; then decrements the SP again and loads the low order 
byte into the memory location corresponding to this new address in the SP. 

M cycles: 4 T states: 15(4,5,3,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 3.75 

If the Index Register IY contains 2233H and the Stack Pointer contains 1007H, 
after the instruction 

PUSH IY 

80 



16 BIT LOAD GROUP 

memory address 1006H will contain 22H, memory address 1005H will contain 
33H, and the Stack Pointer will contain 1005H. The number from register pair 
IY is now on the top of the stack. 

Before: 

Register IY 
2233 

Stack Pointer 
1007 

After: PUSH 

Register IY 
2233 

Stack Pointer 
1005 

POPqq 

Address 
1007 
1008 

IY 

Address 
1005 
1006 
1007 
1008 

Stack 
FF 
35 

Stack 
33 
22 
FF 
35 

Operation: qqH ¢(SP+ 1), qqL ¢ (SP) 

Format: 

Mnemonic: POP Operands: qq 

Object Code: 

Description: 

The top two bytes of the external memory LIFO (last-in, first-out) Stack are 
popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit 
address of the current "top" of the Stack. This instruction first loads into the 
low order portion of qq, the byte at the memory location corresponding to the 
contents of SP; then SP is incremented and the contents of the corresponding 
adjacent memory location are loaded into the high order portion of qq and the 
SP is now incremented again. The operand qq defines register pair BC, DE, HL, 
or AF, assembled as follows in the object code: 

81 



SERIES I EDITOR/ ASSEMBLER 

Pair r 
BC 00 
DE 01 
HL 10 
AF 11 

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50 

Condition Bits Affected: None 

Example: 

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and 
location 1001H contains 33H, the instruction 

POP HL 

will result in register pair HL containing 3355H, and the Stack Pointer 
containing 1002H. In other words register pair HL contains the number which 
was on the top of the stack, and the stack pointer is pointing to the current top of 
the stack. 

Before: 

Register HL 
2233 

Stack Pointer 
1000 

After: POP 

Register HL 

3355 

Stack Pointer 

1002 

POPIX 

Address 
1000 
1001 
1002 
1003 

HL 

Address 

1002 
1003 

Stack 
55 
33 
A4 
62 

Stack 

A4 
62 

Operation: IXH¢(SP + 1), IXL¢(SP) 

Format: 

Mnemonic: POP Operands: IX 

82 



16 BIT LOAD GROUP 

Object Code: 

DD 

El 

Description: 

The top two bytes of the external memory LIFO (last-in, first-out) Stack are 
popped into Index Register IX. The Stack Pointer (SP) register pair holds the 
16-bit address of the current ''top'' of the Stack. This instruction first loads into 
the low order portion of IX the byte at the memory location corresponding to the 
contents of SP; then SP is incremented and the contents of the corresponding 
adjacent memory location are loaded into the high order portion of fX. The SP 
is now incremented again. 

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50 

Condition Bits Affected: None 

Example: 

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and 
location 1001H contains 33H, the instruction 

POP IX 

will result in the Index Register IX containing 3355H, and the Stack Pointer 
containing 1002H. Register pair IX contains the number which used to be on the 
top of the stack. 

Before: 

Register IX 

24F9 

Stack Pointer 

1000 

Address 

1000 
1001 
1002 
1003 

Stack 

55 
33 
A4 
62 

83 



SERIES I EDITOR/ ASSEMBLER 

After: POP 

Register IX 

3355 

Stack Pointer 

1002 

POP IV 

.IX 

Address 
1002 
1003 

Stack 
A4 
62 

Operation: IYH ¢(SP+ 1 ),IYL ¢ (SP) 

Format: 

Mnemonic: POP Operands: IY 

Object Code: 

I:: :1:1: >< FD 

I : 1 : 0 : 0 : 0 >< I El 

Description: 

The top two bytes of the external memory LIFO (last-in, first-out) Stack are 
popped into Index Register IY. The Stack Pointer (SP) register pair holds the 
16-bit address of the current "top" of the Stack. This instruction first loads into 
the low order pmtion of [Y the byte at the memory location co1Tesponding to the 
contents of SP; then SP is incremented and the contents of the corresponding 
adjacent memory location are loaded into the high order portion of IY. The SP 
is now incremented again. 

M cycles: 4 T states: 14(4,4,3,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 3.50 

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and 
location 1001 H contains 33H, the instruction 

POP IY 

will result in Index Register IY containing 3355H, and the Stack Pointer 
containing 1002H. Register pair lY contains the number which used to be on the 
top of the stack. 

84 



16 BIT LOAD GROUP 

Before: 

Register lY Address Stack 
24F9 1000 55 

1001 33 
1002 A4 
1003 62 

Stack Pointer 
1000 

After: POP IY 

Register lY Address Stack 
3355 1002 A4 

1003 62 

Stack Pointer 
1002 

85 





EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

Exchange, Block Transfer 
and Search Group 

EX DE,HL 
Operation: DE¢• HL 

Format: 

Mnemonic: EX Operands: DE, HL 

Object Code: 

EB 

Description: 

The two-byte contents of register pairs DE and HL are exchanged. 

M cycles: I T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: None 

Example: 

EXchange 

If the content of register pair DE is the number 2822H, and the content of the 
register pair HL is number 499AH, after the instruction 

EX DE,HL 

the content of register pair DE will be 499AH and the content of register pair 
HL will be 2822H. 

EX AF,AF' EXchange 

Operation: AF ¢(>AF' 

.Format: 

Mnemonic: EX Operands: AF, AF' 

87 



SERIES I EDITOR/ASSEMBLER 

Object. Code: 

0 0 0 0 0 0 0 j 08 

Description: 

The two-byte contents of the pairs AF and AF' are exchanged. 
(Note: palr consists of registers and F .') 

!Vi r states: 4 ~. MHz ET. l 

Condition Bits Affected: None 

Example: 

If the content of 
p:m 

EX AF 

AF is number 99@1)H, and the content of register 
the instruction 

the contents of AF will be 5944H, and the contents of AF will be 990Q)H. 

EXX 
Operation: (BC)¢• (BC'), (DE) 

:Fonnat: 

l\,foemonk: EXX 

Objed 

Operands: 

i l O O O I 
L_._.., __ ,_I --~ .. ···--J,___ : _._ ,_,. __ ,,,. ! _,,_,_,, . ,L ..... - ~- . '·---... -,---,~·: ----·-··---·-' 

Dcstription: 

EXchange 

(DE'), (HL) ¢• (HL.1) 

D9 

pairs BC, DE, and HL is exchanged with the 
'and HL,' 

M T st.ates: 4 

Condition Bits Affected: Nont· 

Example J: 

4 MHz E.T.: U~O 

If the contents of pairs BC, DE, ;md HL are the nurnbers 445AH, 
3DA21L and 8859H, resp~ctively, and the contents of register pairs BC: DE; 
and HL' are 0988H, 93v),ffl. and (~(,)E7H, respectively, after the instruction 

88 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

EXX 

the contents of the register pairs will be as follows: BC: 0988H; DE: 9300H; 
HL: 00E7H; BC': 445AH; DE': 3DA2H; and HL': 8859H. 

Example 2: 

If the contents of the registers are as shown: 

BC 1111H 
DE 2222H 
HL 3333H 
BC' 4444H 
DE' 5555H 
HL' 6666H 

Then after an EXX instruction the registers will contain: 

BC 4444H 
DE 5555H 
HL 6666H 
BC' 1111H 
DE' 2222H 
HL' 3333H 

EX (SP), HL EXchange 

Operation: H ¢•(SP+ 1 ), L ¢• (SP) 

Format: 

Mnemonic: EX Operands: (SP),HL 

Object Code: 

Description: 

The low order byte contained in register pair HL is exchanged with the contents 
of the memory address specified by the contents of register pair SP (Stack 
Pointer), and the high order byte of HL is exchanged with the next highest 
memory address (SP+ 1). 

M cycles: 5 T states: 19(4,3,4,3,5) 4 MHz E.T.: 4.75 

Condition Bits Affected: None 

89 



SERIES I EDITOR/ASSEMBLER 

Example: 

If the HL register pair contains 7012H, the SP register pair contains 8856H, the 
memory location 8856H contains the byte 1 lH, and the memory location 8857H 
contains the byte 22H, then the instruction 

EX (SP},HL 

will result in the HL register pair containing number 221 lH, memory location 
8856H containing the byte 12H, the memory location 8857H containing the byte 
70H and the Stack Pointer containing 8856H. 

Before: 

Register HL 

7012 

Stack Pointer 

8856 

After: 

Register HL 

2211 

Stack Pointer 

8856 

Address 

8856 
8857 
8858 

Address 

8856 
8857 
8858 

EX (SP),IX 

Stack 

11 
22 

Stack 

12 
70 

Operation: IXH ¢Q (SP + 1 ), IXL ¢t> (SP) 

Format: 

Mnemonic: EX Operands: (SP), IX 

Object Code: 

11:1:0:1:1:1:0:11 

11:1:1:0:0:0:1:11 

90 

DD 

E3 

EXchange 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

Description: 

The low order byte in Index Register IX is exchanged with the contents of the 
memory address specified by the contents of register pair SP (Stack Pointer), 
and the high order byte of IX is exchanged with the next highest memory 
address (SP+ I). 

Condition Bits Affected: None 

Example: 

If the Index Register IX contains 3988H, the SP register pair contains 0100H, 
the memory location 0100H contains the byte 90H, and memory location 0101H 
contains byte 48H, then the instruction 

EX (SP),IX 

will result in the IX register pair containing number 4890H, memory location 
0100H containing 88H, memory location 0101H containing 39H and the Stack 
Pointer containing 0100H. 

Before: 

Register IX 

3988 

Stack Pointer 

0100 

After: 

Register IX 

4890 

Stack Pointer 

0100 

Address 

0100 
OlOl 

Address 

OIOO 
0101 

Stack 

90 
48 

Stack 

88 
39 

EX (SP),IY 
Operation: IYH ¢[)(SP+ 1), IYL ¢[) (SP) 

Format: 

Mnemonic: EX Operands: (SP), IY 

EXchange 

91 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

FD 

0 0 0 E3 

Description: 

The low order byte in Index Register IY is exchanged with the contents of the 
memory address specified by the contents of register pair SP (Stack Pointer), 
and the high order byte of IY is exchanged with the next highest memory 
address (SP+ 1). 

M cycles: 6 T states: 23(4,4,3,4,3 4 l\fflz KT.: 5.75 

Condition Bits Affected: None 

Exam1>le: 

If the Index Register IY contains 3988H, the SP register pair contains l1t,%m, 
the memory location ~H0t1H contains the byte 9(U1, and memory location 
010 JH contains byte 48H, then the .instruction 

EX (SP),IY 

will result in the I Y register pair containing number 489(?H, memory location 
0l(10H containing 88H, memory location (1l()!H containing 39H, and the Stack 
Pointer containing 01\iMH. 

Before: 

Register IY 

3988 

Stack Pointer 

0100 

At\er: 

Register IY 

4890 

Stack Pointer 

OlOO 

92 

Address 

0100 
0101 

Address 

0100 
0101 

Stack 

90 
48 

Stack 

88 
39 



EXCHANGE, BLOCK TRANSFER ANO SEARCH GROUP 

LOI LoaD & Increment 

Operation: (DE)¢ (HL), DE¢ DE+ 1, HL¢ HL + 1, BC¢ BC - 1 

Format: 

Mnemonic: LDI Operands: 

Object Code: 

I 1 · o 1 
L-~~-~~-~~-~ 

i 

I 0 I ED 

i -r7 
0 0 0 0 0 ! AO 

Description: 

A byte of data is transferred from the memory location addressed by the 
contents of the HL register pair to the memory location addressed by the 
contents of the DE register pair. Then both these register pairs are incremented 
and the BC (Byte Counter) register pair is decremented. 

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T: 4.00 

Condition Bit.s Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Set if BC -- 1 :::/= 0: reset otherwise 
N: Reset 
C: Not affected 

Example 1: 

If the HL register pair contains 1 l 1 IH. memory location l l l lH contains the byte 
88H, the DE register pair contains 2222H, the memory location 2222H contains 
byte 66H, and the BC register pair contains 7H, then the instruction 

LDl 

will result in the following contents in register pairs and memory addresses: 

HL I ll2H 
(1111 H) 88H 
DE 2223H 
(2222H) 88H 
BC 6H 

93 



SERIES I EDITOR/ASSEMBLER 

and the condition Bits will be: 

S Z H P/V N C 

Example 2: 

If the contents of registers and memory are as shown: 

HL 
(7C00) 
DE 
(3C00) 
BC 

7C00H 
FFH 
3C00H 
00H 
1H 

Then after an LDI instruction the registers and memory will contain the 
following: 

HL 
(7C00) 
DE 
(3C00) 
BC 0H 

7C01H 
FFH 
3C0lH 
FFH 

and the condition bits will be: 

S Z H P/V N C 

Example 3: 

The following program will move 80 consecutive bytes from BUFl to BUF2: 

LD HL, BUFl 
LD DE, BUF2 
LD BC, 80 
LOOP LDI 
JP NZ, LOOP 

LDIR LoaD Increment & Repeat 

Operation: (DE)¢ (HL), DE¢ DE+ 1, HL ¢ HL + 1, BC¢ BC -1 

Format: 

Mnemonic: LDIR Operands: 

94 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

Object Code: 

I : : : 0: : : 0: I ED 

I : 0 : : : 0 : 0 : 0 : 0 I B0 

Description: 

This two-byte instruction transfers a byte of data from the memory location 
addressed by the contents of the HL register pair to the memory location 
addressed by the DE register pair. Then both these register pairs are incremented 
and the BC (Byte Counter) register pair is decremented. If decrementing causes 
the BC to go to zero, the instruction is terminated. If BC is not zero the program 
counter (PC) is decremented by 2 and the instruction is repeated. Note that if 
BC is set to zero prior to instruction execution, the instruction will loop through 
64K bytes. Also, interrupts will be recognized after each data transfer. 

For BC4:0: 

M cycles: 5 

For BC=0: 

T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25 

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Reset 
N: Reset 
C: Not affected 

Example: 

If the HL register pair contains 111 IH, the DE register pair contains 2222H, the 
BC register pair contains 0003H, and memory locations have these contents: 

(llllH) 
(Ill2H) 
0113H) 

88H 
36H 
ASH 

then after the execution of 

LDIR 

(2222H) 
(2223H) 
(2224H) 

66H 
59H 
C5H 

95 



SERIES I EDITOR/ASSEMBLER 

the contents of register pairs and memory locations will be: 

HL 1114H 
DE 2225H 
BC 0000H 
(1111H) 88H (2222H) 88H 
(1112H) 36H (2223H) 36H 
(1113H) A5H (2224H) A5H 

and the H, P/V, and N flags are all zero. 

LDD LoaD Decrement 

Operation: (DE)¢ (HL), DE¢ DE -1, HL ¢ HL -1, BC¢ BC -1 

Format: 

Mnemonic: LDD Operands: 

Object Code: 

11:1:1:0:1:1:0:11 

11:0:1:0:1:0:0:01 

Description: 

ED 

A8 

This two-byte instruction transfers a byte of data from the memory location 
addressed by the contents of the HL register pair to the memory location 
addressed by the contents of the DE register pair. Then both of these register 
pairs, including the BC (Byte Counter) register pair, are decremented. 

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Set if BC - 1 =I=- 0; reset otherwise 
N: Reset 
C: Not affected 

96 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

Example l: 

If the HL register pair contains 111 lH, memory location 111 IH contains the byte 
88H. the DE register pair contains 2222H, memory location 2222H contains 
byte 66H, and the BC pair contains 7H, then the instruction 

LDD 

will result in the following contents in register pairs and memory addresses: 

HL lll0H 
( l Ill H) 88H 
DE 222JH 
(2222H) 88H 
BC 6H 

and the condition bits will be: 

Ii ~)111()1 I L __ I . . 

S Z H P/V N C 

Example 

If the contents of registers and mernory are as ,;;hown: 

HL 
(7CFF) 
DE 
(3CFF) 
BC 

7CFFH 
3CH 
3CFFH 
(/JQ)H 

1H 
Then after a LDD instruction the registers and memory will contain the 
following: 

HL 
(7CFF) 
DE 
(3CFF) 
BC 

7CFEH 
3CH 
3CFEH 
3CH 
0H 

and the condition bits will be: 

L I 0 I 0_l0J __ J 
S Z H P/V N C 

LDDR LoaD Decrement & Repeat 

Operation: (DE)¢ (HL), DE¢ DE -1, HL¢ HL-1, BC¢ BC --1 

Format: 

Mnemonic: LDDR Operands: 

97 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

I : : : 0: : : 0: I ED 

I >< : : : 0 : 0 : 0 I B8 

Description: 

This two-byte instruction transfers a byte of data from the memory location 
addressed by the contents of the HL register pair to the memory location 
addressed by the contents of the DE register pair. Then both of these registers 
as well as the BC (Byte Counter) are decremented. If decrementing causes the 
BC to go to zero, the instruction is terminated. If BC is not zero, the program 
counter (PC) is decremented by 2 and the instrnction is repeated. Note that if 
BC is set to zero prior to instruction execution, the instruction will loop through 
64K bytes. Also, interrupts will be recognized after each data transfer. 

For BC*0: 

M cycles: 5 

For BC =0: 

T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25 

M cycles: 4 T states: 16(4.4.3,5) 4 MHz E.T.: 4.(10 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/Y: Reset 
N: Reset 
C: Not affected 

Example: 

If the HL register pair contains 1114H, the DE register pair contains 2225H. the 
BC register pair contains 0003H, and memory locations have these contents: 

(I l 14H) 
(1113H) 
( 1112H) 

ASH 
36H 
88H 

then after the execution of 

LDDR 

98 

(2225H) 
(2224H) 
(2223H) 

C5H 
59H 
66H 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

the contents of register pairs and memory locations will be: 

HL 111 IH 
DE 2222H 
BC 0000H 
(1114H) A5H (2225H) A5H 
(1113H) 36H (2224H) 36H 
(1112H) 88H (2223H) 88H 

and the H, P/V, and N flags are all zero. 

CPI ComPare & Increment 

Operation: A- (HL), HL¢ HL + 1, BC¢ BC-1 

Format: 

Mnemonic: CPI Operands: 

Object Code: 

1 :1: :0:1:1:0:11 ED 

1 :0:1:0:0:0:0: 1 
Al 

Description: 

The contents of the memory location addressed by the HL register pair is 
compared with the contents of the Accumulator. In case of a true compare, the 
Z condition bit is set. Then HL is incremented and the Byte Counter (register 
pair BC) is decremented. 

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if A= (HL); reset otherwise 
H: Set if borrow from Bit 4; reset otherwise 
P/V: Reset if BC becomes 0; set otherwise 
N: Set 
C: Not affected 

99 



SERIES I EDITOR/ASSEMBLER 

Example: 

If the HL register pair contains 1111H, memory location 1111H contains 3BH, 
the Accumulator contains 3BH, and the Byte Counter contains 0001H, then after 
the execution of 

CPI 

the Byte Counter will contain 0000H, the HL register pair will contain 1112H, 
the Z flag in the F register will be set, and the P/V flag in the F register will be 
reset. There will be no effect on the contents of the Accumulator or address 
111 IH. 

If the contents of memory and registers are as showri 

HL 
(8A00H) 
A 
BC 

8A00H 
6DH 
75H 
5H 

Then during the execution of a CPI instruction the Arithmetic and Logic Unit 
will do the following subtraction: 

Borrow needed here 

75H = 0111 0101 
- 6DH = 0110 1101 -----

8H = 0000 1000 

After CPI is executed registers and memory will contain the following: 

HL 
(8A00H) 
A 
BC 

8A01H 
6DH 
75H 
4H 

and the condition bits would be: 

I o I o I 1 I 
s z H 

result positive • • • 

match not found 
borrow from bit 4 

Example 3: 

1 I 1 I 1 I 
P/V N C 
• • • not affected 

always set 
BC not zero 

The following program is used to verify that the contents of two 80-byte buffers 
are identical. Each time a mismatch is found the program calls a subroutine 
called ERROR. 

100 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

STRT LD HL, BUFl 
LD DE, BtJF2 
LD BC, 80 

LOOP LD A, (DE) 
CPI 
CALL NZ, ERROR 
INC DE 
JR P(), LOOP 

END 

CPIR CornPare Increment & Repeat 

Operation: A_., (HL), HL ¢ HL. + 1, BC (J BC•--· 1 

Form~t: 

Mncnumk: CPlR Operands: 

Objeci Code: 
r·----~-; 
i I ' f 
I l O O l 
L __ .L_~-~~-~-l ....... L ....... J 

ED 

0 0 0 Bl 

Description: 

The contents of the mernory location addrc~,:-,e<l by the HL register pair is 
compared with the contents of !he Accumu!alor. In case of a true compare. the 
Z condition bit i,, sci. The HL is incremented and the Byte Counter {register 
pair BC) is decremented. 1f decrementing cause;, the BC to go lo zero or if 
A =0 (HLL the instruction is terminated. H HC is not zero and 1<\ :f: (HL). thi:: 
program counter is decremented by 2 and th,~ ins1.ruction i, repeated. Note that if 
BC is set w zen-1 bef'on: the execution, the inslructiun will !oop through MK 
bytes, if no match i<, found. i\iso. mterrupts will be rtcognized after each data 
comparison. 

for BC f: l'l and /\. ::J (H L): 

rvl cyd~s: 5 T states: 2J(4.-:L3,5.5J 4 tVIHz E.T.: 5.25 

For BC.;;/: O or A,·. ,HL): 
M cycles: ~+ T smks.: ih(4,4,3.S} 4 MHz E.T.: 4.()0 

i01 



SERIES I EDITOR/ASSEMBLER 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if A= (HL); reset otherwise 
H: Set if borrow from Bit 4; reset otherwise 
P/V: Reset if BC becomes 0; set otherwise 
N: Set 
C: Not affected 

Example: 

If the HL register pair contains 111 lH, the Accumulator (Register A) contains 
F3H, the Byte Counter contains 0007H, and memory locations have these 
contents: 

(llllH): 52H 
(1112H) : 00H 
(1113H) : , F3H 

then after the execution of 

CPIR 

the contents of register pair HL will be 1114H, and the contents of the Byte 
Counter will be 0004H. Since BC =I= 0, the P/V flag is still set. This means that it 
did not search through the whole block before the instruction stopped. Since a 
match was found, the Z flag is set. 

The following program uses the CPIR instruction to count the number of nulls 
(00H) found in an 80-byte buffer. The count is kept in register E. 

STRT LD 
LD 
LD 
LD 

LOOP CPIR 
JR 
INC 

FOO JP 
END 

CPD 

BC, 80 
HL, BUFF 
A,O 
E,O 

NZ, FOO 
E 
PE, LOOP 

ComPare & Decrement 

Operation: A - (HL), HL ¢ HL - 1, BC¢ BC - 1 

Format: 

Mnemonic: CPD Operands: 

102 



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP 

Object Code: 

I : : : o : : : o : I ED 

I : o : : o : : o : o : I A9 

Description: 

The contents of the memory location addressed by the HL register pair is 
compared with the contents of the Accumulator. In case of a true compare, the Z 
condition bit is set. The HL and the Byte Counter (register pair BC) are 
decremented. 

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if A= (HL); reset otherwise 
H: Set if bon-ow from Bit 4; reset otherwise 
P/V: Reset if BC becomes zero; set otherwise 
N: Set 
C: Not affected 

Example: 

If the HL register pair contains l l I lH, memory location J l l lH contains 3BH, 
the Accumulator contains 3BH, and the Byte Counter contains 0001H, then after 
the execution of 

CPD 

the Byte Counter will contain 0000H, the HL register pair will contain 1110H, 
the Z tlag in the F register will be set and the P/V flag in the F register will be 
reset. There will be no effect on the contents of the Accumulator or address 
111 IH. 

Since the CPD instruction decrements HL, it is used to search through memory 
from high to low addresses. Otherwise it is similar to the CPI instruction. 

CPDR ComPare Decrement & Repeat 

Operation: A- (HL), HL ¢ HL-1, BC Q BC -1 

Format: 

Mnemonic: CPDR Operands: 

103 



SERIES I EDITOR/ASSEMBLER 

Object Code: 
I 7 ! 

l O i 
~--~-~I ___ j_ ___ I 
I I 

I I j 
~_1~ __ ; __ 1 - ED 

I l 0 0 0 B9 

Description: 

The contents of the memory location addressed by the HL register pair is 
compared with the contents of the Accumulator. fn case of a true compare, the 
Z condition bit is set. The HL and BC (Byte Counter) register pairs are 
decremented. If decrementing causes the BC to go to zero or if A= (HL), the 
instruction is terminated. HBC is not zero and A =t (HL), the program counter is 
decremented 2 and the instruction is repeated. Note that if BC 1s set to zero 
prior to instruction execution, the instruction vvill loop through 64K bytes, if 11() 

match is found. Also, interrupts will be recognized after each data comparison. 

For BC*0 and A+ 
M cycles: 5 T states: 21(4 ,5 4 MHz E.T: 5.25 

For BC= Ql or A (I-IL): 

M 4 T states: l6(4,4,J 4 :MHz E.T.: 4.v,0 

Condition Bits Affected: 

S: Set if result is negative: reset otherwise 
Z· Set if A ,, mu. reset otherwise 
H: Set if born)\V rrorn Bit 4: reset otherwise 
P/V: Reset if BC becomes zero; set othcnvise 
N: Set 
C· Not affected 

Example: 

If the HL register pair contains l 1 l8H. the Accumulator contains F3H, th1;; Byte 
Counter contain'> (1v)(BIL and mernory locations ha\C these contents: 

( 1118H) 521-1 
(l l l7H) V)OH 
( I l l6H) F3H 

then after the execution of 

CPDR 

the contents of pair HL will be l I l5H, the contents of the Byte Counter 
will be (i)(;)(;)\')fL the P/V flag in the F register \Vill he reset, and the Z in the 
F will be scL 

104 



8 BIT ARITHMETIC AND LOGICAL GROUP 

8 Bit Aritl1metic a11d Logical Group 
ADD A,r 
Operation: A ¢ A -+ r 

Format: 

Mnemonic: ADD Operands: A, r 

Object Code: 

Ues(:ription: 

The rnntcms of register r are added to the contents of the Accumulator, and the 
result is stored in the .l\cc1unulatnr The symbol r identities the registers A. B, 
C, D, E. Hor L as-.;embled HS follows in the object code: 

Register r 

.A 
B 
C 
D 
E 
H 
L 

M cycles: l 

l Lt 
V)t%) 
@OJ 
tH0 
()I 1 

10" 
Wl 

T states: 4 

Condition Bits Affected: 

4 rvIHz E.T.: U10 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; re:,et otherwise 
H: Set if carry from Bit 3: reset otherwise 
P/V: Se! if overflow; reset otherwise 
N: Reset 
C: Set if c;1rry from Bit 7: reset otherwise 

Example: 

If the contents of the Accumularor are 44H. and the contents of register Care 
J Ht, after the execution of 

ADD A.,C 

105 



SERIES I EDITOR/ASSEMBLER 

the contents of the Accumulator will be 55H. See Appendix K for more details 
of condition bits affected. 

ADDA,n 
Operation: A¢ A + n 

Format: 

Mnemonic: ADD Operands: A, n 

Object Code: 

11:1:0:0:0:1:1:01 

ln:n:n:n:n:n:n:nl 

Description: 

C6 

The integer n is added to the contents of the Accumulator and the results are 
stored in the Accumulator. 

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 7; reset otherwise 

Example: 

If the contents of the Accumulator are 23H, after the execution of 

ADD A,33H 

the contents of the Accumulator will be 56H. 

106 



8 BIT ARITHMETIC AND LOGICAL GROUP 

ADD A,(HL) 
Operation: A¢A+ (HL) 

F'ormat: 

Mnemonic: ADD Operands: A, (HL) 

Object Code: 
,----i ____ T ___ T ____ T ___ r----T 

L~-- i 
O 

i 
O O L~~-L~_1_~o~ 

86 

Description: 

The byte at the memory address specified by the contents of the HL register 
pair is added to the contents of the Accurnulator and the result is stored in the 
Accumulator. 

M 2 T states: 7(4,3) 4 MHz E.T.: 1.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero: reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if overflow: reset otherwise 
N: Reset 
C: Set if carry from Bit 7; reset otherwise 

Example: 

If the contents of the Accumulator are A0H. and the content of the register 
pair H.L is 2323H, and 1nernory location 2323H contains byte 08H, after the 
execution of 

ADD A,(HL) 

the Accumulator will contain A8H. 

ADD A,(IX+d) 
Operation: AQA + (IX+d) 

F'ormat: 

Mnemonic: ADD Operands: A, (IX+ d) 

107 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

0 0 1 DD 

0 0 0 0 86 

d d d d d 

Description: 

The contents of the Index Register (register pair lX) is added to a two's 
complement displacement d to point to an address in memory. The contents of 
this address is then added to the contents of the Accumulator and the result is 
stored in the Accurnulator. 

M cycles: 5 T states: 19(4,4.3.5,3) 4 MHz. E.T.: 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if resu!t is zero; reset otherwise 
H: Set if c"my from Bit 3; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 7; reset otherwise 

Example: 

If the Accumulator contents are UH, the Index Register IX contains 1(10{H-l. and 
if the content of memory location 1005H is 22H, after the execution of 

ADD A.OX+ 5H) 

the contents of the Accumulator will be 33H. 

ADD A,(IY + d) 
Operation: A ¢A (IY-+-d) 

format: 

Mnemonic: ADD Operands: A, (IY+ d) 

108 



8 BIT ARITHMETIC AND LOGICAL GROUP 

Object Code: 

l O I FD 

1 o : o : o : o : ; : o I 86 

d d d d d d d d 

Description: 

The contents of the Index Register (register pair IY) is added to the 
displacement d to point to an address in memory. The contents of this address 
is then added to the contents of the Accumulator and the result is stored in the 
Accumulator. 

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 7; reset othenvise 

Example: 

If the Accumulator contents are 11 H, the Index Register pair IY contains 1000H, 
and if the content of memory location 1005H is 221-I, after the execution of 

ADD A,(IY+SH) 

the contents of the Accumulator will be 33H. 

ADCA,S ADd with Carry 

Operation: A QA+ S + CY 

Format: 

Mnemonic: ADC Operands: A, s 

The s operand is any of r. n, (HL), (IX-HI) or (IY+d) as defined for the 
analogous ADD instruction. These various possible opcode-operand 
combinations are assembled as follows in the object cock: 

109 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

ADC A. r 

ADC A, n 

ADC A, (HL) 

ADC A, (IX+dJ 

ADC A. OY+d) 

I 
r I 0 0 0 l r r 

L _ _j 

0 0 0 

I 
n n n n n n n n I 

r---i----·, 
11,0 o,o, 
L_L ____ _L ___ _;_ ___ ~-~~~~~ 

0 

c----,--,----,---,----,----r---;-- --1 

CE 

8E 

I l l 0 0 l I DD 
I I 

r---r 
I I 0 0 0 l 8E 

I 

I 

~ d d d d 

I --1-- - 1 ·---7 
l O l ! FD 

~~-~-~-~-~~-~I ___ __I 

' j I ---·7 
0 0 0 ! 1 l O j 8E 

~~-~~-~-- I ___ L ___ L ____ J 

r .. I 1 , 

I d ; d I d d d d d I d I 

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object 
code field above: 

Register r 

A -- l l 1 
B 0~)0 
C 0{)! 

D ·-- 010 
E -- Cll I 
H [(;){) 

L -·- 101 

Description: 

The s operand, along with the Carry Flag ( "C" in the F register) is added to the 
contents of the Accumulator, and the result is stored in the Accumulator. 

110 



8 BIT ARITHMETIC AND LOGICAL GROUP 

M 4MHz 
Instruction Cycles T States E.T. in µ,s 

ADC A. r i 4 L00 
ADC A, n 2 7(4.3) 1.75 
ADC A, (HL) 2 7(4,3) l.75 
ADC A, (IX+d) 5 !9(4,4,3,5,J) 4.75 
ADC A, OY+d) 5 19(4,4,3,5 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero: reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/Y: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bil 7; reset otherwise 

Example 1: 

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair 
contains 6666H, and address 6666H contains l0H, after the execution of 

ADC A, (HL) 

the Accumulator will com.ain 27H. 

Example 2: 

If the Carry Flag is set, the Accumulator contains 30H, and register C contains,, 
5H, then after the execution of 

ADC A, C 

the Accumulator will contain 36H. 

SUBs SUBtract 

Operation: A¢ A - S 

Format: 

Mnemonic: SUB Operands: s 

The s operand is any of r, n, (HL), (IX+ d) or (lY + d) as defined for the 
analogous ADD instruction. These various possible opcode-operand 
combinations are assembled as follows in the object code: 

1 i i 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

SUB r 

SUBn 

SUB (HL) 

SUB (IX+d) 

SUB (IY+d) 

11:0:0:1:0:r:r:rl 

11:1:0:1:0:1:1:01 

Jn:n:n:n:n:n:n:nl 

i 1 :0:0: 1 :o: 1: 1 :01 

J1:1:o:1:1:1:o:1J 

11:0:0:1:0:1:1:01 

1d:d:d:d:d:d:d:d1 

11:1:1:1:1:1:0:11 

I 1 :0:0: 1 :o: 1: 1 :01 

1d:d:d:d:d:d:d:d1 

D6 

96 

DD 

96 

FD 

96 

r identifies registers A, B, C, D, E, Hor L assembled as follows in the object 
code field above: 

Register r 
A = 111 
B = 000 
C = 001 
D = 010 
E = 011 
H = 100 
L = 101 

Description: 

The s operand is subtracted from the contents of the Accumulator, and the result 
is stored in the Accumulator. 

112 



8 BIT ARITHMETIC AND LOGICAL GROUP 

M 4MHz 
Instruction Cycles T States E.T. in µs 

SUB r 1 4 1.00 
SUB n 2 7(4,3) 1.75 
SUB (HL) 2 7(4,3) 1.75 
SUB (IX+d) 5 19(4,4,3,5,3) 4.75 
SUB (IY+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if borrow from Bit 4; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Set 
C: Set if borrow; reset otherwise 

Example: 

If the Accumulator contains 29H and register D contains 1 lH, after the 
execution of 

SUB D 

the Accumulator will contain 18H. 

SBCA,s SuBtract with borrow (Carry) 

Operation: A¢ A - s - CY 

Format: 

Mnemonic: SBC Operands: A, s 

The s operand is any of r, n, (HL), (IX+ d) or (IY + d) as defined for the 
analogous ADD instructions. These various possible opcode-operand 

• combinations are assembled as follows in the object code: 

Object Code: 

SBC A, r I 1 : 0 : 0 : 1 
: 

1 : r : r : r I 

SBCA, n I 1 
: 

1 : 0 : 1 
: 

1 : 1 : 1 : 0 I DE 

ln:n:n:n:n:n:n:nl 

113 



SERIES I EDITOR/ASSEMBLER 

SBC A, (HL) I 1 : 0 : 0 : 1 
: 

1 : 1 
: 

1 : 0 I 9E 

SBC A, (IX+d) I 1 
: 

1 : 0 : 1 
: 

1 : 1 : 0 : 1 
I DD 

I 1 : 0 : 0 : 1 
: 

1 : 1 : 1 : 0 I 9E 

1d:d:d:d:d:d:d:d1 

SBC A,(IY + d) I 1 : 1 
: 

1 
: 

1 : 1 
: 

1 : 0 : 1 I FD 

9E 

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object 
code field above: 

Register r 

A = 111 
B = 000 
C == 001 
D = 010 
E = 011 
H = 100 
L = 101 

Description: 

The s operand, along with the Carry Flag ("C" in the F register) is subtracted 
from the contents of the Accumulator, and the result is stored in the 
Accumulator. 

114 



8 BIT ARITHMETIC AND LOGICAL GROUP 

M 4MHz 
Instruction Cycles T States E.T. in µs 

SBC A, r I 4 1.00 
SBC A, n 2 7(4,3) 1.75 
SBC A, (HL) 2 7(4,J) l.75 
SBC A, (IX+ d) 5 19(4,4,3,5,3) 4.75 
SBC A, (IY + d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if borrow from Bit 4; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Set 
C: Set if borrow; reset otherwise 

Example 1: 

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair 
contains 3433H, and address 3433H contains 05H, after the execution of 

SBC A,(HL) 

the Accumulator will contain i0H. 

Example 2: 

If the Carry Flag is set, the Accumulator contains 2 lH and register B contains 0, 
then after the execution of 

SBC A,B 

the Accumulator contains 20H. 

ANDs 
Operation: A QA o S 

Format: 

Mnemonic: AND Operands: s 

The s operand is any of r, n, (HL), (IX+d) or (JY+d), as defined for the 
analogous ADD instructions. These various possible opcode-operand 
combinations are assembled as follows in the object code: 

115 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

ANDr O O O 1 r r r I 

ANDn E6 

I 

I n n n n n n n n I 

AND (HL) 11 o o o oj A6 

AND (lX+d) I 1 : : o : : : : o : I DD 

j :C< :o'.<< : :oJ A6 

d d d d d d d d 

AND (IY+d) I : : : : : : 0 : I FD 

I >< : 0 : 0 : : : 0 I A6 

i d I <l I d I d I d I d I d I d I 
I I ! I I I I I 

r identifies register A, B, C, D. E, Hor L assembled as follows in the object 
code field above: 

Register r 

A = 111 
B = 0t)e) 

C = 001 
D = 010 
E = 011 
H = 100 
L -- 101 

116 



8 BIT ARITHMETIC AND LOGICAL GROUP 

Description: 

A logical AND operation, Bit by Bit is performed between the byte specified 
by the s operand and the byte contained in the Accumulator; the result is stored 
in the Accumulator. 

M 4MHz 
Instruction Cycles T States E.T. in µs 

ANDr 1 4 1.00 
ANDn 2 7(4,3) 1.75 
AND (HL) 2 7(4,3) 1.75 
AND (IX+d) 5 19(4,4,3,5,3) 4.75 
AND (IX+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Reset 

Table of AND Values: 

IF Then 
A B A (After) 

0 () 0 
0 l 0 
l 0 0 
I 1 1 

Example: 

If the B register contains 7BH (01111011) and the Accumulator contains C3H 
(l 1000011), after the execution of 

AND B 

the Accumulator will contain 43H (0H7l0001 l). 

ORs 
Operation: A¢ A o S 

Format: 

Mnemonic: OR Operands: s 

117 



SERIES I EDITOR/ASSEMBLER 

The s operand is any ofr, n, (BL), OX+d), or (IY+d), as defined for the 
analogous ADD instructions. These various possible opcode-operand 
combinations are assembled as follows in the object code: 

Object Code: 

OR r I l 0 0 r r r I 
I 

I 

r J 
I 

ORn 0 OI F6 
1_:__j 

I I 

! n n n ll n n n n I 

OR (HL) 1 0 l 0 ~l B6 
I 

OR (IX+d) I 0 0 DD I l, _______ 

I : : : 

-~ -- 7 I i 
0 l 0 0 I B6 

I I 

I cl d d d d d d d 
L_ ! 

I i 

OR(IY+d) I l 0 l FD 
I 
l. .• 

0 0 1 ;-:~~-] B6 

d d d d d d cl d 

r identifies register A, B, C, D, E, Hor L assembled as follows in the object 
code field above: 

Register r 

A = l 11 
B - 000 
C -- 001 
D - ,H0 
E -- 0l l 
H 10V) 
L ·- 101 

118 



8 BIT ARITHMETIC AND LOGICAL GROUP 

Description: 

A logical OR operation, Bit by Bit, is performed between the byte specified by 
the s operand and the byte contained in the Accumulator; the result is stored in 
the Accumulator. 

M 4MHz 
Instruction Cycles T States E.T. in µ,s 

ORr l 4 1.00 
ORn 2 7(4,3) 1.75 
OR (HL) 2 7(4,3) 1.75 
OR(IX+d) 5 19(4,4,3,5,3) 4.75 
OR (IY+d) 5 19(4,4,3,5,3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Reset 

Table of OR Values: 

IF Then 
A B A (After) 

0 0 0 
0 l 1 
1 0 1 
1 1 I 

Example: 

If the H register contains 48H (01001000) and the Accumulator contains 
12H (00010010), after the execution of 

OR H 
the Accumulator will contain 5AH (01011010). 

XORs 
Operation: A¢ AEBs 

Format: 

Mnemonic: XOR Operands: s 

exclusive OR 

119 



SERIES I EDITOR/ASSEMBLER 

The s operand is any of r, n, (HL), (IX+ d) or (IY + d), as defined for the 
analogous ADD instructions. These various possible opcode-operand 
combinations are assembled as follows in the object code: 

Object Code: 

XORr 

XORn 

XOR (HL) 

XOR (IX+d) 

XOR OY+d) 

r---T·- ,·--· 
[ 1 0 l 0 r r r I 
I 

0 0 

i 
I n n n n n n n n 

0 0 1 0 

0 l O l 

0 1 0 01 

L~ d d d d d d d 

' 
I 1 
I 0 

d : d : d : d : d : d I 

EE 

AE 

DD 

AE 

FD 

AE 

r identities registers A, B, C, D, E, Hor L assembled as follows in the object 
code field above: 

Register r 

A 11 l 
B .,. (100 
C ,)01 
D ··- 0[0 
' E - l1 I 1 

H ,_ l ~,,, 

L ·--· rn1 

120 



8 BIT ARITHMETIC AND LOGICAL GROUP 

Description: 

A logical exclusive-OR operation, bit by bit, is performed between the byte 
specified by the s operand and the byte contained in the Accumulator; the result 
is stored in the Accumulator. 

M 4MHz 
Instruction Cycles T States E.T. in µs 

XORr 1 4 1.00 
XORn 2 7(4,3) 1.75 
XOR (HL) 2 7(4,3) 1.75 
XOR (IX+d) 5 19(4,4,3,5,3) 4.75 
XOR (IY+d) 5 19(4,4,3,5.3) 4.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Reset 

Table of XOR Values: 

IF Then 
A B A (After) 

0 0 0 
0 1 l 
1 0 1 
1 1 0 

Note: in Table above that any two like numbers will result in zero. 

Example 1: 

If the Accumulator contains 96H (10010110), after the execution of 

XOR 5DH (Note: 5DH=01011101) 

the Accumulator will contain CBH (11001011 ). 

Example 2: 

The instruction 

XOR A 

will zero the Accumulator. 

121 



SERIES I EDITOR/ASSEMBLER 

CPs 
Operation: A- S 

Format: 

Mnemonic: CP Operands: s 

The s operand is any of r, n, (HL), (IX+ d) or CLY+ d), as defined for the 
analogous ADD instructions. These various possible opcode-operand 
combinations are assembled as follows in the object code: 

Object Code: 

' r] CP r 0 r r 

CPn L2-i_1 1 0 FE 

n : n : n : n : n : n : n : n I 

CP(HL) 0 l 0 BE 

CP (IX+ cl) 0 I • · l 
I 

0 I DD 

I : 
() 

: : : : : : 
(J 

I BE 

d d d d d d d d 
_ _l_~-

CP (IY+d) 
I : : : : : : 0 FD 

r··-·-1 

0 l O I BE 

r identifies register A, B, C, D, E, Hor L assembled as follows in the object 
code field above: 

122 

ComPare 



8 BIT ARITHMETIC AND LOGICAL GROUP 

Register r 

A 111 
B = 000 
C 001 
D = 010 
E 011 
H = 100 
L = 101 

Description: 

The contents of the s operand are compared with the contents of the 
Accumulator. If there is a true compare, a flag is set. 

M 
Instruction Cycles T States 

CPr 1 4 
CPn 2 7(4,3) 
CP (HL) 2 7(4,3) 
CP (IX+d) 5 19(4,4,3,5,3) 
CP (IY+d) 5 19(4,4,3,5,3) 

Condition Bits Affected: 

S: 
Z: 

Set if result is negative; reset otherwise 
Set if result is zero; reset otherwise 

H: 
P/V: 
N: 
C: 

Set if borrow from Bit 4; reset otherwise 
Set if overflow; reset otherwise 
Set 
Set if borrow in Bit 7; reset otherwise 

Example 1: 

4MHz 
E.T. in µs 

1.00 
1.75 
1.75 
4.75 
4.75 

• 

If the Accumulator contains 63H, the HL register pair contains 6000H and 
memory location 6000H contains 60H, the instruction 

CP (HL) 

will result in all the flags being reset except N. 

Example: 2 

If the Accumulator contains 65H and register C also contains 65H, then after the 
execution of 

CP C 

the Z flag will be set. 

See Appendix E for more details of condition codes affected. 

123 



SERIES I EDITOR/ASSEMBLER 

INC r INCrement 

Operation: r ¢ r + 1 

Format: 

Mnemonic: INC Operands: r 

Object Code: 

Description: 

Register r is incremented. r identifies any of the registers A, B, C, D, E, Hor 
L, assembled as follows in the object code. 

Register r 

A 111 
B 000 
C 001 
D 010 
E 011 
H = 100 
L = 101 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if r was 7FH before operation; reset otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of register D are 28H, after the execution of 

INC D 

the contents of register D will be 29H. 

124 



8 BIT ARITHMETIC AND LOGICAL GROUP 

INC (HL) INCrement 

Operation: (HL) Q (HL) + 1 

Format: 

Mnemonic: INC Operands: (HL) 

Object Code: 

34 

Description: 

The byte contained in the address specified by the contents of the HL register 
pair is incremented. 

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if (HL) was 7FH before operation; reset otherwise 
N: Reset 
C: Not Affected 

Example: 

If the contents of the HL register pair are 3434H, and the contents of address 
3434H are 82H, after the execution of 

INC (HL) 

memory location 3434H will contain 83H. 

INC (IX+d) INCrement 

Operation: (IX+ d) ¢(IX+ d) + 1 

Format: 

Mnemonic: INC Operands: (IX+ d) 

125 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

·r 
0 

0 0 

r I 

I d d d 

Description: 

0 DD 

0 0 0 34 

d d d d d 

The contents of the Index Register IX (register pair IX) are added to a two's 
complernent displacement integer d to point to an address in memory. The 
contents of this address are then incremented. 

M 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75 

Condition Hits Affected: 

S: Set if result is negative: reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if (IX+ d) was 7FH before operation; reset otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of the Index Register pair IX are 2Q)20H, and the memory 
location 2030H contains byte 34H, after the execution of 

INC OX+ l0H) 

the contents of memory location 2v)3vm wil I he 35 H. 

INC (IY -t-d) INCrement 

Operation: (IY d) ¢ (IY + d) + i 

Format: 

Mnemonic: INC Operands: (IY+ dJ 

126 

• 



8 BIT ARITHMETIC AND LOGICAL GROUP 

Object Code: 

1 l 0 FD 

10 0 0 0 0 34 

d d d d d d d d 

Description: 

The contents of the Index Register IY (register pair IY) are added to a two's 
complement displacement integer d to point to an address in memory. The 
contents of this address are then incremented. 

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry from Bit 3; reset otherwise 
P/V: Set if (lY + d) was 7FH before operation; reset otherwise 
N: Reset 
C: Not Affected 

Example: 

If the contents of the Index Register pair IY are 2020H, and the memory 
location 2030H contain byte 34H, after the execution of 

INC (! Y + 10H) 

the contents of memory location 2030H will be 35H. 

DECm DECrement 

Operation: m Q m -1 

Format: 

Mnemonic: DEC Operands: m 

Them operand is any of r, (HL), (IX+d) or (IY+d), as defined for the 
analogous INC instructions. These various possible opcode-operand 
combinations are assembled as follows in the object code: 

127 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

DECr 

DEC (HL) 

DEC (IX+d) 

DEC (IY+ d) 

io:o:r:r:r: :o: I 

!o'.o'. : :0;1:0: I 

1 0 l 0 

Jo:o: : :o: :C< I 

1d:d:d:d:d:d:d:d1 

I : : : : : l : 0 : I 

I o : o : 1 : >< : o : 1 I 

I d : d : d : d : d : d : d : d I 

35 

DD 

35 

FD 

35 

r identifies register A, B, C, D, E, Hor L assembled as follows in the object 
code field above: 

Register r 

A -- ll l 
B -- 000 
C - 001 
D ·- 010 
E = 011 
H -- 100 
L = l(I) I 

Description: 

The byte specified by them operand is decremented. 

128 



8 BIT ARITHMETIC AND LOGICAL GROUP 

M 4MHz 
Instruction Cycles T States E.T. in µs 

DECr 1 4 1.00 
DEC (HL) 3 11(4,4,3) 2.75 
DEC (IX+d) 6 23(4,4,3,5,4,3) 5.75 
DEC (IY+d) 6 23(4,4,3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if borrow from Bit 4; reset otherwise 
P/V: Set if m was 80H before operation; reset otherwise 
N: Set 
C: Not affected 

Example: 

If the D register contains byte 2AH, after the execution of 

DEC D 

register D will contain 29H. 

129 





GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

General Purpose Arithmetic and 
CPU Control Groups 

DAA 
Operation: Decimal-Adjust Accumulator 

Format: 

Mnemonic: DAA Operands: 

Object Code: 

Description: 

This instruction modifies the results of addition or subtraction so that the results 
of binary arithmetic are coJTect for decimal numbers. The Binary Coded 
Decimal (BCD) code uses the 8-bit accumulator as follows: the eight bits are 
broken up into two groups of four bits, which represent a two-digit decimal 
number from 00 to 99. lf numbers like this are added with the binary adder in 
the Z-80, answers larger than 10 may result in each decimal place. The DAA 
instruction will "adjust" the answer so that each decimal place has a value of 9 
or less, and so that the digits have the correct decimal value. though they were 
added hy a binary circuit. The carry and half-carry flags are used in this 
conversion, as is a circuit that detects digits that are 10 or bigger. 

Operation 

ADD 
ADC 
INC 

SUB 
SBC 
DEC 
NEG 

M cycles: l 

HEX HEX 
Value in Value in 

C Upper H Lower 
Before Digit Before Digit 
DAA (bits 7-4) DAA (bits 3-0) 

0 0-9 0 0-9 
0 0-8 0 A-F 
0 0-9 I ()-3 

0 A-F (1 0-9 
0 9-F 0 A-F 
0 A-F I {IJ-3 
1 0-2 0 {i)-9 

1 0-2 0 A-F 
l 0-3 1 0-3 

0 0-9 0 (?-9 
(? 0-8 1 6-F 
1 7-F 0 ,~-9 
l 6-F I 6-F 

T states: 4 4 MHz ET.: U?0 

Number 
Added C 

to After 
Byte DAA 
C?0 0 
06 (i) 

06 (;) 

60 I 
66 l 
66 I 
6~) 1 
66 l 
66 l 

(i)() 0 
FA 0 
A0 I 
9A l 

131 



SERIES I EDITOR/ASSEMBLER 

Condition Bits Affected: 

S: Set if most significant bit of Acc. is 1 after operation; reset otherwise 
Z: Set if Acc. is zero after operation; reset otherwise 
H: See instruction 
P/V: Set if Acc. is even parity after operation; reset otherwise 
N: Not affected 
C: See instruction 

Example: 

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple 
decimal arithmetic gives this result: 

15 
+27 

42 

But when the binary representations are added in the Accumulator according to 
standard binary arithmetic, 

0001 0101 
+0010 0111 ----

0011 1100= 3C 

the sum is not decimal. The DAA instruction adjusts this result so that the 
correct BCD representation is obtained: 

0011 1100 
+ 0000 0110(adding 06 from table) 

0100 0010=42 

CPL ComPLement 

Operation: A¢ A 

Format: 

Mnemonic: CPL Operands: 

Object Code: 

2F 

132 



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

Description: 

Contents of the Accumulator (register A) are inverted (one's complement). 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Set 
P/V: Not affected 
N: Set 
C: Not affected 

Example: 

If the contents of the Accumulator are 1011 0100, after the execution of 

CPL 

the Accumulator contents will be 0100 1011. 

NEG 
Operation: A¢ 0 - A 

Format: 

Mnemonic: NEG Operands: 

Object Code: 

I 1 : : 1 : o : : : o : I 

lo: 1 :0:0:0: 1 :0:01 

Description: 

ED 

44 

NEGate 

Contents of the Accumulator are negated (two's complement). This is the same 
as subtracting the contents of the Accumulator from zero. Note that 80H is left 
unchanged. 

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00 

133 



SERIES I EDITOR/ASSEMBLER 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if borrow from Bit 4; reset otherwise 
P/V: Set if Acc. was 80H before operation; reset otherwise 
N: Set 
C: Set if Acc. was not 00H before operation; reset otherwise 

Example: 

If the contents of the Accumulator are 

1 1 1 o I o 1 1 1 1 1 o o o 
after the execution of 

NEG 
the Accumulator contents will be 

I o I 1 1 1 1 o 1 o o o 

CCF 
Operation: CY¢ CY 

Format: 

Mnemonic: CCF Operands: 

Object Code: 

io:0:1:1:1:1:1:1\ 

Description: 

The C flag in the F register is inverted. 

Complement Carry Flag 

3F 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Previous carry will be copied 
P/V: Not affected 
N: Reset 
C: Set if CY was 0 before operation; reset otherwise 

134 



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

SCF Set Carry Flag 

Operation: CY¢ 1 

Format: 

Mnemonic: SCF Operands: 

Object Code: 

37 

Description: 

The C flag in the F register is set. 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Not affected 
N: Reset 
C: Set 

NOP No OPeration 

Operation: 

Format: 

Mnemonic: NOP Operands: 

Object Code: 

00 

135 



SERIES I EDITOR/ASSEMBLER 

Description: 

CPU performs no operation during this machine cycle. 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: None 

HALT 
Operation: 

Format: 

Mnemonic: HALT Operands: 

Object Code: 

Description: 

The HALT instruction suspends CPU operation until a subsequent interrupt or 
reset is received. While in the halt state, the processor will execute NOP's to 
maintain memory refresh logic. 

M cycles: 1 T states: 4 4MHzE.T.: 1.00 

Condition Bits Affected: None 

DI Disable Interrupts 

Operation: IFF ¢ 0 

Format: 

Mnemonic: DI Operands: 

Object Code: 

F3 

136 



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

Description: 

DI disables the maskable interrupt by resetting the interrupt enable flip-flops 
(IFFI and IFF2). Note that this instruction disables the maskable interrupt 
during its execution. 

M cycles: 1 T states: 4 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 1.00 

When the CPU executes the instruction 

DI 
the maskable interrupt is disabled until it is subsequently re-enabled by an EI 
instruction. The CPU will not respond to an Interrupt Request (INT) signal. 

El Enable Interrupts 

Operation: IFF ¢ 1 

Format: 

Mnemonic: EI Operands: 

Object Code: 

FB 

Description: 

EI enables the maskable interrupt by setting the interrupt enable flip-flops (IFFJ 
and IFF2). Note that this instruction disables the maskable interrupt during its 
execution. 

M cycles: I T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: None 

Example: 

When the CPU executes instruction 

RETI 

the maskable interrupt is enabled. The CPU will now respond to an Interrupt 
Request (INT) signal. 

137 



SERIES I EDITOR/ASSEMBLER 

IM 0 Interrupt Mode 0 

Operation: 

Format: 

Mnemonic: IM Operands: 0 

Object Code: 

I : 1 : l : 0 : : : 0 : I ED 

lo'. '.o'.o:o: : :oj 46 

Description: 

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting device 
can insert any instruction on the data bus and allow the CPU to execute it. The 
first byte of a multi-byte instruction is read during interrupt acknowledge cycle. 
Subsequent bytes are read in by a normal memory read sequence. 

M cycles: 2 T states: 8(4,4) 

Condition Bits Affected: None 

IM 1 
Operation: 

Format: 

Mnemonic: IM Operands: 1 

Object Code: 

l'.
1 :'.<<'.><I 

/o'. '.t< '.o'. '. '.oi 

138 

4 MHz E.T.: 2.00 

Interrupt Mode 1 

ED 

56 



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 

Description: 

The IM instruction sets interrupt mode l. In this mode the processor will 
respond to an interrupt by executing a restart to location 0038H. 

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00 

Condition Bits Affected: None 

IM 2 Interrupt Mode 2 

Operation: 

Format: 

Mnemonic: IM Operands: 2 

Object Code: 

0 0 ED 

0 0 0 SE 

Description: 

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to 
any location in memory. With this mode the CPU forms a 16-bit memory 
address. The upper eight bits are the contents of the Interrupt Vector Register I 
and the lower eight bits are supplied by the intetTupting device. 

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00 

Condition Bits Affected: None 

139 





16 BIT ARITHMETIC GROUP 

16 Bit Arithmetic Group 
ADD HL,ss 
Operation: HL¢ HL + SS 

Format: 

Mnemonic: ADD Operands: HL, ss 

Object Code: 

I o : o : s : s : : o : o : I 

Description: 

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are 
added to the contents of register pair HL, and the result is stored in HL. 
Operand ss is specified as follows in the assembled object code. 

Register 
Pair ss 

BC 00 
DE 01 
HL 10 
SP 11 

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Set if carry out of Bit 11; reset otherwise 
P/V: Not affected 
N: Reset 
C: Set if carry from Bit 15; reset otherwise 

Example: 

If register pair HL contains the integer 4242H and register pair DE contains 
111 IH, after the execution of 

ADD HL, DE 

the HL register pair will contain 5353H. 

141 



SERIES I EDITOR/ASSEMBLER 

ADC HL,ss 
Operation: HL¢ HL + ss + CY 

Format: 

Mnemonic: ADC Operands: HL, ss 

Object Code: 

!1:1:1:0:1:1:0:11 

io:1:s:s:1:0:1:oJ 

Description: 

ED 

ADd with Carry 

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are 
added with the Carry Flag (C flag in the F register) to the contents of register 
pair HL, and the result is stored in HL. Operand ss is specified as follows in the 
assembled object code. 

Register 
Pair ss 

BC 00 
DE 01 
HL 10 
SP 11 

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if carry out of Bit 11; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Reset 
C: Set if carry from Bit 15; reset otherwise 

Example: 

If the register pair BC contains 2222H, register pair HL contains 5437H and the 
Carry Flag is set, after the execution of 

ADC HL, BC 

the contents of HL will be 765AH. 

142 



16 BIT ARITHMETIC GROUP 

SBC HL,ss 
Operation: HL¢ HL- ss - CY 

Format: 

Mnemonic: SBC Operands: HL, ss 

Object Code: 

11:1:1:0:1:1:0:11 

lo:1:s:s:0:0:1:01 

Description: 

SuBtract with Carry 

ED 

The contents of the register pair ss (any of register pairs BC, DE, HL or SP) 
and the Carry Flag (C flag in the F register) are subtracted from the contents of 
register pair HL and the result is stored in HL. Operand ss is specified as 
follows in the assembled object code. 

Register 
Pair ss 

BC 00 
DE 01 
HL 10 
SP 11 

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Set if borrow from Bit 12; reset otherwise 
P/V: Set if overflow; reset otherwise 
N: Set 
C: Set if borrow; reset otherwise 

Example: 

If the contents of the HL register pair are 9999H, the contents of register pair 
DE are llllH, and the Carry Flag is set, after the execution of 

SBC HL, DE 

the contents of HL will be 8887H. 

143 



SERIES I EDITOR/ASSEMBLER 

ADD IX,pp 
Operation: IX¢ IX+ pp 

Format: 

Mnemonic: ADD Operands: IX,pp 

Object Code: 

J1:1:o:1:1:1:o:1I 

1 o : o : p : p : 1 : o : o : 1 1 

Description: 

DD 

The contents of register pair pp (any of register pairs BC, DE, IX or SP) are 
added to the contents of the Index Register IX, and the results are stored in IX. 
Operand pp is specified as follows in the assembled object code. 

Register 
Pair pp 

BC 00 
DE 01 
IX 10 
SP 11 

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Set if carry out of Bit 11; reset otherwise 
P/V: Not affected 
N: Reset 
C: Set if carry from Bit 15; reset otherwise 

Example: 

If the contents of Index Register IX are 3333H and the contents of register pair 
BC are 5555H, after the execution of 

ADD IX, BC 

the contents of IX will be 8888H. 

144 



16 BIT ARITHMETIC GROUP 

ADD IY,rr 
Operation: IV¢ IV+ rr 

Format: 

Mnemonic: ADD Operands: IY, rr 

Object Code: 

11:1:1:1:1:1:0:11 

jo:o:r:r:1:o:o:1J 

Description: 

FD 

The contents of register pair rr (any of register pairs BC, DE, IY or SP) are 
added to the contents of Index Register IY, and the result is stored in IY. 
Operand rr is specified as follows in the assembled object code. 

Register 
Pair rr 

BC 00 
DE 01 
IY 10 
SP 11 

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Set if carry out of Bit 11; reset otherwise 
P/V: Not affected 
N: Reset 
C: Set if carry from Bit 15; reset otherwise 

Example: 

If the contents of Index Register IY are 333H and the contents of register pair 
BC are 555H, after the execution of 

ADD IY, BC 

the contents of IY will be 888H. 

145 



SERIES I EDITOR/ASSEMBLER 

INCss INCrement 

Operation: SS ¢ SS + 1 

Format: 

Mnemonic: INC Operands: ss 

Object Code: 

0 0 s s O 0 

Description: 

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are 
incremented. Operand ss is specified as follows in the assembled object code. 

Register 
Pair ss 

BC 00 
DE 01 
HL 10 
SP l 1 

M cycles: 1 T states: 6 4 MHz E.T.: l.50 

Condition Bits Affected: None 

Example: 

lf the register pair contains 100~lH, after the execution of 

INC HL 

HL will contain 1001H. 

INC IX 
Operation: IX¢ IX+ 1 

J?ormat: 

Mnemonic: INC Operands: lX 

146 

INCrement 



16 BIT ARITHMETIC GROUP 

Object Code: 

I 1 
: 
1 : 0 : 1 

: 
1 : 1 : 0 : 1 I DD 

lo:o: 1 :o:o:o: 1 : 1 I 23 

Description: 

The contents of the Index Register IX are incremented. 

M cycles: 2 T states: 10(4,6) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 2.50 

If the Index Register IX contains the integer 3300H after the execution of 

INC IX 

the contents oflndex Register IX will be 3301H. 

INC IY 
Operation: IY ¢ IY + 1 

Format: 

Mnemonic: INC Operands: IY 

Object Code: 

11:1:1:1:1:1:0:11 

10:0: 1 :o:o:o: 1: 1 I 

Description: 

FD 

23 

The contents of the Index Register IY are incremented. 

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50 

Condition Bits Affected: None 

INCrement 

147 



SERIES I EDITOf:1/ASSEMBLER 

Example: 

If the contents of the Index Register are 2977H, after the execution of 

INC IY 

the contents of Index Register IY will be 2978H. 

DECss DECrement 

Operation: SS ¢ SS -1 

Format: 

Mnemonic: DEC Operands: ss 

Object Code: 

Description: 

The contents of register pair ss (any of the register pairs BC, DE, HL or SP) are 
decremented. Operand ss is specified as follows in the assembled object code. 

Register 
Pair ss 

BC 00 
DE 01 
HL 10 
SP 11 

M cycles: 1 T states: 6 4 MHz E.T.: 1.50 

Condition Bits Affected: None 

Example: 

If register pair HL contains 1001H, after the execution of 

DEC HL 

the contents of HL will be 1000H. 

148 



16 BIT ARITHMETIC GROUP 

DECIX 
Operation: IX¢ IX-1 

Format: 

Mnemonic: DEC Operands: IX 

Object Code: 

11:1:0:1:1:1:0:11 

10:0:1:0:1:0:1:11 

Description: 

DD 

2B 

The contents of Index Register IX are decremented. 

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50 

Condition Bits Affected: None 

Example: 

DECrement 

If the contents of Index Register IX are 2006H, after the execution of 

DEC IX 

the contents of Index Register IX will be 2005H. 

DEC IV 
Operation: IV¢ IV -1 

Format: 

Mnemonic: DEC Operands: IY 

Object Code: 

11:1:1:1:1:1:0:11 

10:0:1:0:1:0:1:11 

FD 

2B 

DECrement 

149 



SERIES I EDITOR/ASSEMBLER 

Description: 

The contents of the Index Register IY are decremented. 

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50 

Condition Bits Affected: None 

Example: 

If the contents of the Index Register IY are 7649H, after the execution of 

DEC IY 
the contents of Index Register IY will be 7648H. 

150 



ROTATE AND SHIFT GROUP 

Rotate and Shift Group 

RLCA Rotate Left Circular Accumulator 

Operation: I CY J ~I 7 ¢ 0 J ~ 
A 

Format: 

Mnemonic: RLCA Operands: 

Object Code: 

07 

Description: 
The contents of the Accumulator (register A) are rotated left: the content of bit 0 
is moved to bit 1; the previous content of bit 1 is moved to bit 2; this pattern is 
continued throughout the register. The content of bit 7 is copied into the Carry 
Flag (C flag in register F) and also into bit 0. (Bit 0 is the least significant bit.) 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 
S: Not affected 
Z: Not affected 
H: Reset 
P/V: Not affected 
N: Reset 
C: Data from Bit 7 of Acc. 

Example: 

If the contents of the Accumulator are 

7 6 5 4 3 2 1 0 

111010101110 0 0 
after the execution of 

RLCA 

the contents of the Carry Flag and the Accumulator will be 

C 7 6 5 4 3 2 1 0 

[I] 1 o I o I o 1 1 1 o I o I o 1 1 1 

151 



SERIES I EDITOR/ASSEMBLER 

RLA 
Operation:~ ¢i 7 •O I ;J 

A 
Format: 

Mnemonic: RLA Operands: 

Object Code: 

Description: 

Rotate Left Accumulator 

The contents of the Accumulator (register A) are rotated left: the content of bit 0 
is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern 
is continued throughout the register. The content of bit 7 is copied into the Carry 
Flag (C flag in register F) and the previous content of the Carry Flag is copied 
into bit 0. Bit 0 is the least significant bit. 

M cycles: 1 T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Not affected 
N: Reset 
C: Data from Bit 7 of Acc. 

Example: 

If the contents of the Carry Flag and the Accumulator are 

C 7 6 5 4 3 2 1 0 

[01011111110 1 1101 
after the execution of 

RLA 

the contents of the Carry Flag and the Accumulator will be 

C 7 6 5 4 3 2 1 0 

[I]11111110111110111 

152 



ROTATE AND SHIFT GROUP 

RRCA Rotate Right Circular Accumulator 

Operation:~ \ 7-Q O ~ [ CY I 
A 

Format: 

Mnemonic: RRCA Operands: 

Object Code: 

0F 

Description: 

The contents of the Accumulator (register A) are rotated right: the content of bit 
7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this 
pattern is continued throughout the register. The content of bit 0 is copied into 
bit 7 and also into the Carry Flag (C flag in register F.) Bit () is the least 
significant bit. 

M cycles: l T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Not affected 
N: Reset 
C: Data from Bit 0 of Acc. 

Example: 

lf the contents of the Accumulator are 

7 6 5 4 3 2 0 

0 0 0 0 0 0 

After the execution of 

RRCA 

the contents of the Accumulator and the Carry Flag will be 

7 6 5 4 3 2 O C 

I 1 I O I O I O I 1 I O I o I O 11 1J 

153 



SERIES I EDITOR/ASSEMBLER 

RRA 
Operation:~ I 7--Q O k> [gyjJ 

A 
Format: 

Mnemonic: RRA Operands: 

Object Code: 

Description: 

lF 

Rotate Right Accumulator 

The contents of the Accumulator (register A) are rotated right: the content of 
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this 
pattern is continued throughout the register. The content of bit 0 is copied into 
the Carry Flag (C flag in register F) and the previous content of the Carry Flag 
is copied into bit 7. Bit 0 is the least significant bit. 

M cycles: I T states: 4 4 MHz E.T.: 1.00 

Condition Bits Affected: 

S: Not affected 
Z: Not affected 
H: Reset 
P/V: Not affected 
N: Reset 
C: Data from Bit 0 of Acc. 

Example: 

If the contents of the Accumulator and the Carry Flag are 

76 5 4 3 2 1 O C 

111111101010101 t l[]J 
after the execution of 

RRA 

the contents of the Accumulator and the Carry Flag will be 

7 6 5 4 3 2 0 C 

10111111101010101[JJ 

154 



ROTATE AND SHIFT GROUP 

RLCr 
Operation: I CY J ~ 7 •O J ~ 

r 
Format: 

Mnemonic: RLC Operands: r 

Object Code: 

J1'.1:o:o:1:o:1:1J 

I O : 0 : 0 : 0 : 0 : r : r : r I 

Description: 

Rotate Left Circular 

CB 

The eight-bit contents of register rare rotated left: the content of bit 0 is copied 
into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is 
continued throughout the register. The content of bit 7 is copied into the Carry 
Flag (C flag in register F) and also into bit 0. Operand r is specified as follows 
in the assembled object code: 

Register r 

B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A 111 

Note: Bit 0 is the least significant bit. 

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

155 



SERIES I EDITOR/ASSEMBLER 

Example: 

If the contents of register r are 

7 6 5 4 3 2 0 

0 0 0 

after the execution of 

RLC r 

0 0 0 

the contents of the Carry Flag and register r will be 

C 7 6 5 4 3 2 0 

OJ I o o o 0 0 0 

RLC (HL)~-~ Rotate Left Circular 

Operation: I CYl J, 7 •O I J 
L..::_. _ __, 

(HL) 
Format: 

Mnemonic: RLC Operands: (HU 

Object Code: 

I : : 
0 0 

: 
I 0 I I 
. _L_._J 

CB 

Io : o : o : o : 0 
: : 

I ~-I 
I I 

06 

Description: 

The contents of the memory address specified by the contents of register pair 
HL are rotated left: the content of bit (i) is copied into bit 1; the previous content 
of bit l is copied into bit 2: this pattern is continued throughout the byte. The 
content of bit 7 is copied into the Can)' Flag (C tlag in register F) and also into 
bit 0. Bit 0 is the least significant bit. 

M cycles: 4 T states: 15(4A.4,3) 4 MHz E.T.: 3.75 

156 



ROTATE AND SHIFT GROUP 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
PN: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

Example: 

If the contents of the HL register pair are 2828H, and the contents of memory 
location 2828H are 

7 6 5 4 3 2 0 

111010101110 0 0 

after the execution of 
RLC (HL) 

the contents of the Carry Flag and memory locations 2828H will be 

C 7 6 5 4 3 2 

RLC (IX+d) 
Operation: LCY I ~~-=-7-¢-0--1 ;J__, 

(IX+d) 
Format: 

0 

Mnemonic: RLC 

Object Code: 

Operands: OX+ d) 

I : : 0 : : : >< I 

I :1:0:C< ;0;1: I 

1d:d:d:d:d:d:d:d1 

I I 
10 0 

I 
0 0 () l 0 

DD 

CB 

06 

Rotate Left Circular 

157 



SERIES I EDITOR/ASSEMBLER 

Description: 

The contents of the memory address specified by the sum of the contents of the 
Index Register IX and a two's complement displacement integer d, are rotated 
left: the contents of bit 0 is copied into bit 1; the previous content of bit 1 is 
copied into bit 2; this pattern is continued throughout the byte. The content of 
bit 7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0 
is the least significant bit. 

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

Example: 

If the contents of the Index Register IX are 1000H, and the contents of memory 
location 1002H are 

7 6 5 4 3 2 1 0 

1110 o o 1 o o o 
after the execution of 

RLC (IX+2H) 

the contents of the Carry Flag and memory location 1002H will be 

C 7 6 5 4 3 2 1 O 

OJ I o o o 1 o o o 1 

RLC (IY+d) 
Operation: I CY I ~ 7 ¢-0 I J 

(IY+d) 
Format: 

Mnemonic: RLC Operands: (IY + d) 

158 

Rotate Left Circular 



ROTATE AND SHIFT GROUP 

Object Code: 

FD 

CB 

06 

Description: 

The contents of the memory address specified by the sum of the contents of the 
Index Register IY and a two's complement displacement integer d are rotated 
left: the content of bit 0 is copied into bit 1; the previous content of bit 1 is 
copied into bit 2; this process is continued throughout the byte. The content of 
bit 7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0 
is the least significant bit. 

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

Example: 

If the contents of the Index Register IY are 1000H, and the contents of memory 
location 1002H are 

7 6 5 4 3 2 1 0 

1 0 0 0 1 0 0 0 

159 



SERIES I EDITOR/ASSEMBLER 

after the execution of 

RLC (1Y+2H) 

the contents of the Carry Flag and memory location 1002H will be 

C 7 6 5 4 3 2 0 

OJlo\o\ol I jojojol 1 I 

Rlm 
Operation:l{g_yj Q-1 7 •O I ;J 

m 
Format: 

Mnemonic: RL Operands: m 

Rotate Left 

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the 
analogous RLC instructions. These various possible opcode-operand 
combinations are specified as follows in the assembled object code: 

Object Code: 

RLr 0 0 1 0 CB 

O O O 1 0 r r r I 

RL (HL) I O O O l CB 

jo:o:o: :o: : '.o/ 16 

RL (IX+ d) 
I : '. 0 : '. : >< I DD 

I : :o;o: :a:1~~1 CB 

[i __ : d : d : d : d : d : d : d I 

!o'.o'.<< :o: o 16 

160 



ROTATE AND SHIFT GROUP 

RL (IY+d) 
t : 1 : 1 : : : : o : 1 I FD 

I : : o: o: >< : I CB 

I d : d : d : d : d : d : d : d I 

lo:o:o: :o: : ;oj 16 

r identifies register B, C, D, E, H, L or A specified as follows in the assembled 
object code above: 

Register r 

B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A 111 

Description: 

The contents of the m operand are rotated left: the content of bit 0 is copied into 
bit 1; the previous content of bit l is copied into bit 2; this pattern is continued 
throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in 
register F) and the previous content of the Carry Flag is copied into bit 0. Bit(:) 
is the least significant bit. 

M 4MHz 
Instruction Cycles T States E.T. in µs 

RL r 2 8(4,4) 2.00 
RL(HL) 4 15(4,4,4,3) 3.75 
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75 
RL (IY+d) 6 23(4,4.3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 7 of source register 

161 



SERIES I EDITOR/ASSEMBLER 

Example: 

If the contents of the Carry Flag and register D are 

C 7 6 5 4 3 2 1 0 

01110101011 1 1 1 

after the execution of 

RL D 

the contents of the Carry Flag and register D will be 

C 7 6 5 4 3 2 1 0 

0]1010101111 1 1101 

RRCm Rotate Right Circular 

Operation:~ I 7j) O ~ I CY I 
m 

Format: 

Mnemonic: RRC Operands: m 

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the 
analogous RLC instructions. These various possible opcode-operand 
combinations are specified as follows in the assembled object code: 

Object Code: 

RRCr I 1 
: 

1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

1 o : o : o : o : 1 : r : r : r I 

RRC (HL) I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

Jo:o:o:o: 1 : 1 : 1 : 0 I 0E 

162 



ROTATE AND SHIFT GROUP 

RRC (IX+d) 0 0 DD 

0 0 0 CB 

d d d d d d d d 

0E 

RRC (IY+d) 0 FD 

() 0 0 CB 

d d d d d d d d 

() 0E 

r identifies register B, C, D, E. H, Lor A specified as follows in the assembled 
object code above: 

Register r 

B 000 
C 001 
D 010 
E ,n l 
H 100 
L 101 
A 111 

Description: 

The contents of operand m are rotated right: the content of bit 7 is copied into 
bit 6; the previous content of bit 6 is copied into hit 5: this pattern is continued 
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in 
the F register) and also into bit 7. Bit 0 is the least significant bi!. 

163 



SERIES I EDITOR/ASSEMBLER 

M 
Instruction Cycles T States 

RRCr 2 8(4,4) 
RRC (HL) 4 15(4,4,4,3) 
RRC (IX+d) 6 23(4,4,3,5,4,3) 
RRC (IY+d) 6 23(4,4,3,5,4,3) 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity even; reset otherwise 
N: Reset 
C: Data from Bit 0 of source register 

Example: 

If the contents of register A are 

7 6 5 4 3 2 0 

1010 0 0 O 

after the execution of 

RRC A 

4MHz 
E.T. in µs 

2.00 
3.75 
5.75 
5.75 

the contents of register A and the Carry Flag will be 

76 5 4 3 2 10 C 

() 0 o o oj[IJ 

RRm 
Operation:~ I 7=:¢ 0 ~ ~ 

m 
Format: 

Mnemonic: RR Operands: m 

Rotate Right 

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the 
analogous RLC instructions. These various possible opcode-operand 
combinations are specified as follows in the assembled object code: 

164 



ROTATE AND SHIFT GROUP 

Object Code: 

RRr I 1 : 1 : 0 : 0 : 1 : 0 : l : l I CB 

Jo:0:0:1:1:r:r:r/ 

RR (HL) I 1 : l : 0 : 0 : l : 0 : I : I I CB 

I O : 0 : 0 : 1 : 1 : l : l : 0 I IE 

RR (IX+d) I I : I : 0 : l : I : 1 : 0 : l I DD 

I l : I : 0 : 0 : 1 : 0 : 1 : 1 I CB 

I d : d : d : d : d : d : d : d I 

I O : 0 : 0 : 1 : 1 : 1 : 1 : 0 I IE 

RR (IY+d) !1:1:1:1:1:1:0:11 FD 

I 1 : 1 : 0 >< l : 0 : 1 : l I CB 

I d : d : d : d : d : d : d : d I 

\0:0:0:1:1:1:1:01 LE 

r identifies registers B, C. D, E, H, Lor A specified as follows in the assembled 
object code above: 

Register r 
B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A 111 

165 



SERIES I EDITOR/ASSEMBLER 

Description: 

The contents of operand m are rotated right: the contents of bit 7 is copied into 
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued 
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in 
register F) and the previous content of the Carry Flag is copied into bit 7. Bit 0 
is the least significant bit. 

M 4MHz 
Instruction Cycles T States E.T. in µs 

RRr 2 8(4,4) 2.00 
RR (HL) 4 15(4,4,4,3) 3.75 
RR (IX+d) 6 23(4,4,3,5,4,3) 5.75 
RR (IY+d) 6 23(4,4,3,5,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit 0 of source register 

Example: 

If the contents of the HL register pair are 4343H, and the contents of memory 
location 4343H and the Carry Flag are 

7 6 5 4 3 2 1 0 C 

11111011111110111[]] 

after the execution of 

RR (HL) 
the contents of location 4343H and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 

1°1 1 1 1 1°1 1 1 1 1 1 1°10] 

SLAm 
Operation: I CY I ¢1 7 ¢-0 I ¢-0 

m 
Format: 

Mnemonic: SLA Operands: m 

166 

Shift Left Arithmetic 



ROTATE AND SHIFT GROUP 

The m operand is any of r, (HL), (IX+ d) or OY+ d), as defined for the 
analogous RLC instructions. These various possible opcode-operand 
combinations are specified as follows in the assembled object code: 

Object Code: 
1··---T 

0 ~ SLA r I 1 1 0 1 0 CB 
L ......... .L ........ J _____ .L ____ L __ 

f __ 0_ 1 __ 0 ·: : 
0 ><r>·:rl 

r-
I 

: >< 0: : : : I 
SLA (HL) I I 0 CB 

i I 

: : 0 : : : : 0 I l_:~~ 0 1 26 

SLA ([X+ d) 
I : : 0 : : : 

1 : 0 : 1 I DD 

I : 0 : 0 : : 0 : : I CB 

[d :d: d:d:d :d :d:dl 

0 0 0 0 l 0 I 26 
i 

SLA (IY+d) I : : : : : 
1 : 0 : I FD 

I : : 0 : O : : 0 : : I CB 

I d : d : d : d : d : d : d : d I 

26 

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled 
object code field above: 

167 



SERIES I EDITOR/ASSEMBLER 

Register 
B 
C 
D 
F 
II 
L 
A 

Description: 

r 
{)'10 
('Iv) l 
v)rn 
011 
IQ)(I) 

HJ! 
111 

An arithmetic shift left is performed on the contents of operand m: bit 0 is reset, 
the previous content of bit 0 is copied into bit I, the previous content of bit l is 
copied into bit 2; this pattern is continued throughout: the content of bit 7 is 
copied into the Carry flag (C flag in register F). Bit 0 is the least significant bit. 

Instruction 

SLA r 
SLA (HL) 
SLA (IX-Hi) 
SLA (IY+ d) 

M 
Cycles 

') 

4 
6 
6 

Condition Bits Affected: 

T States 
8(4,4) 
15(4,4,4,3) 
23{4,4,3,5.4,3) 
23(4,4,3,5,4,3) 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit 7 

Example: 

[f the contents of register L are 

7 6 5 4 3 2 0 

I l I O J-1:_l 1 0 _0_,_(_J __.__~ 

after the execution of 

SLA L 

the contents of the Carry Flag and register L will be 

C 7 6 5 4 3 0 

[U~1_0...,____,_-'l_c_)7}._L._o_-~1_0_,___,__o~ 

168 

4MHz 
E:f. in µs 

2.00 
3.75 
5.75 
5.75 



ROTATE AND SHIFT GROUP 

SRAm Shift Right Arithmetic 

Operation: r ;? ~ f-o I CY i 

]format: 

Mnemonic: SRA Operands: m 

The m operand is any of r, (HL), (IX+ d) or (IY +cl), as defined for the 
analogous RLC instructions. These various possible opcode-operand 
combinations are specified as follows in the assembled object code: 

Object Code: 

SRAr CB 

SRA (HL) I : : o : o ; : o : : 1 I CB 

jo:o: :o; 1: :of 2E 

SRA (IX+d) I 1 
: : 0 : 1 

: : 
1 : 0 : 1 I DD 

I 1 : l : 0 : 0 : 1 : 0 : 1 : 1 I CB 

1d:d:d:d:d:d:d:d1 

I o : o : : 0 : 1 
: : 

1 : o I 2E 

169 



SERIES I EDITOR/ASSEMBLER 

SRA (TY+d) 0 FD 

CB 

Id I d 
I I 

[.. ··;-T·~-r-1 r-·1-1-·;·-r· o ·1 

... ~_L O ............ 1 _ _,1_-"I....__......._I -"--1 _..._i ___,_ 
2E 

r means register B, C, D, E, H, Lor A specified as follows in the assembled 
object code field above: 

Register r 

B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A l 1 l 

An arithmetic shift right is performed on the contents of operand m: the content 
of bit 7 is copied into hit 6; the previous content of bit 6 is copied into bit 5; this 
pattern is continued throughout the byte. The content of bit 0 is copied into the 
Can-y Flag (C flag in register F), and the previous content of bit 7 is unchanged. 
Bit 0 is the least significant bit. 

M 4MHz 
Instruction Cycles T States E.T. in µs 

SRA r 2 8(4,4) 2.00 
SRA (HL) 4 15(4,4,4,3) 3.75 
SRA (IX+d) 6 23(4,4,3,5,4,3) 5.75 
SRA (IY+d) 6 23( 4,4,3 ,5 ,4,3) 5.75 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit 0 of source register 

170 



ROTATE AND SHIFT GROUP 

Example: 

If the contents of the Index Register IX are 1000H, and the contents of memory 
location 1003H are 

7 6 5 4 3 2 1 0 

11101111111010101 

after the execution of 

SRA (IX+3H) 

the contents of memory location 1003H and the Carry Flag will be 

7 6 5 4 3 2 1 0 C 

1111101111 110101[:QJ 

SRL m Shift Right Logical 

Operation: 0-¢ I 7::¢ 0 ~ I CY I 
m 

Format: 

Mnemonic: SRL Operands: m 

The operand mis any of r, (HL), (IX+d) or (IY+d), as defined for the 
analogous RLC instructions. These various possible opcode-operand 
combinations are specified as follows in the assembled object code: 

Object Code: 

SRLr I 1 : 1 :o:o: 1 : 0 : 1 
: 

1 I CB 

1 o : o : 1 : 1 : 1 : r : r : r I 

SRL (HL) I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

1 o : o : 1 : 1 
: 

1 
: 

1 : 1 : 0 I 3E 

171 



SERIES I EDITOR/ASSEMBLER 

SRL (IX+d) I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

1d:d:d:d:d:d:d:d1 

I o : o : 1 : 1 : 1 : 1 : 1 : o I 3E 

SRL (IY+d) I 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : ~ I CB 

1d:d:d:d:d:d:d:d1 

I o : o : 1 : 1 : 1 : 1 : 1 : 0 I 3E 

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled 
object code fields above: 

Register r 

B 000 
C 001 
D 010 
E 011 
H 100 
L i 101 
A 111 

Description; 

The contents of operand m are shifted right: the content of bit 7 is copied into 
bit 6; the content of bit 6 is copied into bit 5; this pattern is continued 
throughout the byte. The content of bit 0 is copied into the Carry Flag, and bit 7 
is reset. Bit 0 is the least significant bit. 

172 



M 
Instruction Cycles T States 

SRL r 2 8(4,4,) 
SRL (BL) 4 15(4,4,4,3) 
SRL (IX+ d) 6 23{4,4,3,5,4,3) 
SRL (IY+ cl) 6 23( 4,4,3 ,5 ,4,3) 

Condition Bits Affected: 

S: Set if result is negative; reset otherwise 
Z: Set if result is zero; reset otherwise 
H: Reset 
P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Data from Bit 0 of source register 

Example: 

lf the contents of register B are 

7 6 5 4 3 2 0 

after the execution of 

SRL B 

ROTATE AND SHIFT GROUP 

4MHz 
E:r. in µs 

2.00 
3.75 
5.75 
5.75 

the contents of register B and the Carry Flag will be 

7 6 5 4 3 2 0 C 

RLD Rotate Left Decimal 
I ~ 

Operation: Al? 41~1 1j~l3 I' (HL) 

.Format: 

Mnemonic: RLD Operands: 

173 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

Description: 

The contents of the low order four bits (bits 3, 2, 1 and 0) of the memory 
location (HL) are copied into the high order four bits (7, 6, 5 and 4) of that same 
memory location; the previous contents of those high order four bits are copied 
into the low order four bits of the Accumulator (register A), and the previous 
contents of the low order four bits of the Accumulator are copied into the low 
order four bits of memory location (HL). The contents of the high order bits of 
the Accumulator are unaffected. Note: (HL) means the memory location 
specified by the contents of the HL register pair. 

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50 

Condition Bits Affected: 

S: Set if Acc. is negative after operation; reset otherwise 
Z: Set if Acc. is zero after operation; reset otherwise 
H: Reset 
P/V: Set if parity of Ace. is even after operation; reset otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of the HL register pair are 5000H, and the contents of the 
Accumulator and memory location 5000H are 

7 6 5 4 3 2 1 0 

01111010 Accumulator 

7 6 5 4 3 2 1 0 

0 0 1 1 0 0 0 1 (5000H) 

174 



ROTATE AND SHIFT GROUP 

after the execution of 

RLD 
the contents of the Accumulator and memory location 5000H will be 

7 6 5 4 3 2 1 0 

I O I 1 1 1 0 0 1 1 Accumulator 

7 6 5 4 3 2 1 0 

I O I 0 0 1 1 0 1 0 (5000H) 

RRD 
Operation: A\7 4\~I t 11ly1 (HL) 

Rotate Right Decimal 

Format: 

Mnemonic: RRD Operands: 

Object Code: 

11:1:1:0:1:1:0:11 

lo:1:1:o:o:1:1:1J 

Description: 

ED 

67 

The contents of the low order four bits (bits 3, 2, 1 and 0) of memory location 
(HL) are copied into the low order four bits of the Accumulator (register A); the 
previous contents of the low order four bits of the Accumulator are copied into 
the high order four bits (7, 6, 5 and 4) of location (HL); and the previous 
contents of the high order four bits of (HL) are copied into the low order four 
bits of (HL). The contents of the high order bits of the Accumulator are 
unaffected. Note: (HL) means the memory location specified by the contents 
of the HL register pair. 

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50 

Condition Bits Affected: 

175 



SERIES I EDITOR/ASSEMBLER 

S: Set if Acc. is1 negative after operation; reset otherwise 
Z: Set if Ace. is zero after operation; reset otherwise 
H: Reset 
P/V: Set if parity of Acc. is even after operation; reset otherwise 
N: Reset 
C: Not affected 

Example: 

If the contents of the HL register pair are 5000H, and the contents of the 
Accumulator and memory location 5000H are 

7 6 5 4 3 2 1 0 

I 1 I 0 I 0 I 0 I 0 I 1 I 0 I 0 I 

7 6 5 4 3 2 1 0 

10101110101010101 
after the execution of 

RRD 

Accumulator 

(5000H) 

the contents of the Accumulator and memory location 5000H will be 

7 6 5 4 3 2 1 0 

I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 

7 6 5 4 3 2 1 0 

10111010101011101 

176 

Accumulator 

(5000H) 



BIT SET, RESET AND TEST GROUP 

Bit Set, Reset and Test Group 

BIT b, r 
Operation: Z ¢ r b 

Format: 

Mnemonic: BIT 

Object Code: 

Operands: b, r 

11:1:0:0:1:0:1:11 

I O : 1 : b : b : b : r : r : r I 

Description: 

CB 

BIT test 

After the execution of this instruction, the Z flag in the F register will contain 
the complement of the indicated bit within the indicated register. Operands b 
and r are specified as follows in the assembled object code: 

Bit 
Tested b Register r 

0 000 B 000 
1 001 C 001 
2 010 D 010 
3 011 E 011 
4 100 H 100 
5 101 L 101 
6 110 A 111 
7 111 

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00 

Condition Bits Affected: 

S: Unknown 
Z: Set if specified Bit is 0; reset otherwise 
H: Set 
P/V: Unknown 
N: Reset 
C: Not affected 

177 



SERIES I EDITOR/ASSEMBLER 

Example: 

If bit 2 in register B contains 0, after the execution of 

BIT 2. B 

the Z flag in the F register will contain I, and bit 2 in register B will remain 0. 
(Bit (i) in register Bis the least significant bit.) 

BIT b,(HL) Bit Test 

Operation: Z ¢ (HL)b 

Format: 

Mnemonic: BIT Operands: b, (HL) 

Object Code: 

I l : : 0 >< >< 1 I CB 

lo: :b:b:b: '. :oi 

Description: 

This instruction tests bit bin the memory location specified by the contents of 
the HL register pair and sets the Z flag accordingly. Operand b is specified as 
follows in the assembled object code: 

Bit 
Tested b 

0 000 
l 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00 

Condition Bits Affected: 

178 



BIT SET, RESET AND TEST GROUP 

S: lJnknown 
Z: Set if specified Bit is (1; reset otherwise 
H: Set 
P/V: Unknown 
H: Reset 
C: Not affected 

Example: 

If the HL register pair contains 444H, and bit 4 in the memory location 444H 
contains l, after the execution of 

BIT 4.(HL) 

the Z flag in the F register will contain 0, and bit 4 in memory location 444H 
will still contain L (Bit 0 in memory location 444H is the least bit) 

BIT b,(IX+d) 
Operation: Z ¢ (IX+ d)b 

.Format: 

Mnemonic: BIT Operands: b, (IX-+-d) 

Object Code: 

I : >< : 0 

I : : o : o : o : : I 

ld:d :d:d:d: d:d:di 

!o'.1:b:b:b: 1 0 

Description: 

DD 

CB 

Bit 

After the execution of this instruction, the Z flag in the F register will contain 
the complement of the indicated bit within the contents of the mernory location 
pointed to by the sum of the contents register pair IX (Index Register IX) and 
the two's complement displacement integer d. Operand b is specified as follows 
in the assembled object code. 

179 



SERIES I EDITOR/ASSEMBLER 

Bit 
Tested b 

0 000 
l 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz E.T.: 5 .00 

Condition Bits Affected: 

S: Unknown 
Z: Set if specified Bit is 0; reset otherwise 
H: Set 
P/V: Unknown 
N: Reset 
C: Not affected 

Example: 

If the contents of Index Register IX are 2000H, and bit 6 in memory location 
2004H contains l, after the execution of 
BIT 6,(IX+4H) 
the Z flag in the F register will contain 0, and bit 6 in memory location 2004H 
will still contain 1. (Bit 0 in memory location 2004H is the least significant bit.) 

BIT b,(IY + d) BIT Test 

Operation: Z ¢ (IY + d)b 

Format: 

Mnemonic: BIT Operands: b, OY + d) 

Object Code: 

I : : : : : : o : 1 I FD 

I : 1 : o : o : : o : : I CB 

ld:d:d:d:d:d :d :di 

\o'.1'.b:b:b: : :ol 

180 



BIT SET, RESET AND TEST GROUP 

Description: 

After the execution of this instruction, the Z flag in the F register will contain 
the complement of the indicated bit within the contents of the memory location 
pointed to by the sum of the contents of register pair IY Ondex Register IY) and 
the two's complement displacement integer d. Operand bis specified as follows 
in the assembled object code: 

Bit 
Tested b 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 11 l 

M cycles: 5 T states: 20(4,4,3,5,4) 

Condition Bits Affected: 

S: Unknown 

4 MHz E.T.: 5.00 

Z: Set if specified Bit is 0; reset otherwise 
H: Set 
P/V: Unknown 
N: Reset 
C: Not affected 

Example: 

If the contents of Index Register are 2000H, and bit 6 in memory location 
2004H contains l, after the execution of 

BIT 6,(IY+4H) 

the Z flag in the F register still contain 0, and bit 6 in memory location 2004H 
will still contain 1. (Bit 0 in memory location 2004H is the least significant bit.) 

SET b,r 
Operation: r b Q 1 

Format: 

Mnemonic: SET Operands: b, r 

181 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB 

!1:1:b:b:b:r:r:rl 

Description: 

Bit b (any bit, 7 through 0) in register r (any of register B, C, D, E, H, Lor A) 
is set. Operands b and r are specified as follows in the assembled object code: 

Bit 
Tested b Register r 

0 000 B 000 
1 001 C 001 
2 010 D 010 
3 011 E 011 
4 100 H 100 
5 101 L 101 
6 110 A 111 
7 111 

M cycles: 2 T states: 8(4,4) 

Condition Bits Affected: None 

Example: 

After the execution of 

SET 4,A 

4 MHz E.T.: 2.00 

bit 4 in register A will be set. (Bit 0 is the least significant bit.) 

SET b,(HL) 
Operation: (HL)b¢ 1 

Format: 

Mnemonic: SET Operands: b, (HL) 

182 



BIT SET, RESET AND TEST GROUP 

Object Code: 

l O 0 CB 

h b b 

Description: 

Bit b (any bit. 7 through 0) in the memory location addressed by the contents of 
register pair HL is set. Operand b is specified as follows in the assembled object 
code: 

Bit 
Tested b 

0 0~)(i) 

1 0v)l 
2 010 
3 01 l 
4 100 
5 101 
6 110 
7 I 11 

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75 

Condition Hits Affected: None 

Example: 

If the contents of the HL register pair are 3000H, after the execution of 

SET 4,(HL) 

bit 4 in memory location 3000H will be ] . (Bit 0 in memory location 3000H 
is the least signi fie ant bit.) 

SET b,(IX+ d) 
Operation: (IX+ d)b¢ 1 

Format: 

Mnemonic: SET Operands: b, (IX+ d) 

183 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

'----'---__..I ·r;-r 1 : : o : \ DD 

o>< :C>'. : I CB 

d d d d d d d 1 dl 

Description: 

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the 
contents of the IX register pair (Index Register IX) and the two's complement 
integer d is set. Operand b is specified as follows in the assembled object code: 

Bit 
Tested b 

0 000 
l 001 
2 010 
3 011 
4 100 
5 H:H 
6 110 
7 111 

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75 

Condition Bits Affected: None 

Example: 

If the contents of Index Register are 2000H, after the execution of 

SET 0,(IX + 3H) 

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H 
is the least significant bit.) 

184 



BIT SET, RESET AND TEST GROUP 

SET b,(IY+d) 
Operation: (IY + d)b ¢ 1 

Format: 

Mnemonic: SET Operands: b, (IY + d) 

Object Code: 

I : : : l : : : 0 : 1 I FD 

I : : 0 : 0 : : 0 : l : I CB 

ja:ct:d: ct:d :d :d:dl 

b b b 0 

Description: 

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the 
contents of the IY register pair (Index Register IY) and the two's complement 
displacement d is set. Operand b is specified as follows in the assembled object 
code: 

Bit 
Tested b 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75 

Condition Bits Affected: None 

185 



SERIES I EDITOR/ASSEMBLER 

Example: 

If the contents of Index Register IY arc :2(1(10H, after the execution of 

SET ~UIY+ 3H) 

bit 0 in memory location 20{BH will be l. (Bit 0 in 1nemory location 2003H 
is the least significant bit.) 

RES b,m RESet 

.Format: 

Mnemonic: RES Operands: b, m 

Operand bis any bit (7 through 0) of the contents of them operand, (any of r, 
(BL), OX+ d) or (IY + d) as defined for the analogous SET instructions These 
various possible opcode-operand combinations are assembled as follows in the 
object code: 

Object Code: 

RES b, r 

RES b, (HL) 

RES b, (IX+ d) 

186 

I o o >< : I 

I ><b:b:b:r:r>·I 

I : 0 : b : b b ~-;·~~-~-~-] 

I : >< : : :03 
0 -~<1:C<1:11 

1d:d:d:d:d:d:d:d1 

11:0:b:b:b: : :01 

CB 

CB 

DD 

CB 



BIT SET, RESET AND TEST GROUP 

RES b, (IY+ d) 

Bit 
Reset. b 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

Description: 

--·-1 
Li __ L~--~' --''--__,___1 J ___ ~ __ J__o i i I 

'1··r-l·- 0 
LI I 

-T·T·-··T 

0 l O l 

Id d cl d cl d dr;1 
[ __ __.__.,__......,_ --'----'---'----'-~ 

~1·r 
L~-L-~ 

b 

Register r 

B 000 
C 001 
D 010 
E ~H l 
H 1(%) 

L 101 
A 111 

Bit bin operand mis reset. 

M 4MHz 

FD 

CB 

Instruction 

RES r 

Cycles 

4 

T States 
8(4,4) 
15(4,4,4,3) 
23(4,4,3,5,4,3) 
23( 4,4.3 ,5 ,4,3) 

E.T. in µs 

RES (BL) 
RES (lX+d) 
RES (lY+d) 

4 
6 
6 

Condition Bits Affected: None 

Example 1: 

After the execution of 

RES 6,D (object code CB, B2H) 

2.00 
3.75 
5.75 
5.75 

bit 6 in register D will be reset. (Bit 0 in register D is the least significant bit.) 

Example 2: 

If HL contains 7000H and address 7000H contains FFH, after 

RES v},(HL) 

address 7000H will contain FEH. 

187 





JUMP GROUP 

Jump Group 

JP nn 
Operation: PC¢ nn 

.Format: 

Mnemonic: JP Operands: nn 

Object Code: 

/1:1;0:o:o;o: : I 

I n : n : n : n : n : n : n : n \ 

I n : n : n : n : n : n : n : n \ 

JumP 

C3 

Note: The first operand in this assembled object code is the low order byte of a 
2-byte address. 

Description: 

Operand nn is loaded into register pair PC (Program Counter) and points to the 
address of the next program instruction to be executed. 

M cycles: 3 T states: 10(4,3,3) , 4 MHz E.T.: 2.50 

Condition Bits Affected: None 

Example: 

JP 50Al 

This instruction will cause the program to jump to the instruction at S0AIH by 
loading the number 50A1H into the PC register. 

189 



SERIES I EDITOR/ASSEMBLER 

JP cc,nn 
Operation: IF cc TRUE, PC¢ nn 

Format: 

Mnemonic: JP Operands: cc, nn 

Object Code: 

I 1: 1 :Cc'.cc:Cc'. 0: 1: 0 I 

ln:n:n:n:n:n:n:nl 

ln:n:n:n:n:n:n:nl 

JumP 

Note: The first n operand in this assembled object code is the low order byte of a 
2-byte memory address. 

Description: 

If condition cc is true, the instruction loads operand nn into register pair PC 
(Program Counter), and the program continues with the instruction beginning at 
address nn. If condition cc is false, the Program Counter is incremented as 
usual, and the program continues with the next sequential instruction. Condition 
cc is programmed as one of eight status bits which correspond to condition bits 
in the Flag Register (register F). These eight status bits are defined in the table 
below, which also specifies the corresponding cc bit fields in the assembled 
object code. 

cc Condition 

000 NZ non-zero 
001 Z zero 
010 NC no-carry 
011 C carry 
100 PO parity odd 
101 PE parity even 
110 P sign positive 
111 M sign negative 

Relevant 
Flag 

Z (=0) 
z (= 1) 
C (=0) 
C (= 1) 
P/V(=0) 
P/V(=l) 
S (=0) 
S (= 1) 

M cycles: 3 T states: 10(4,3,3) 

Condition Bits Affected: None 

190 

4 MHz E.T.: 2.50 



JUMP GROUP 

Example: 

If the Cany Flag (C flag in the F register) is set and the contents of address 152(,, 
arc 03H, after the execution of 

JP C,l520H 

the Program Counter will contain 1520H, and on the next inachine cycle the 
CPU will fetch from address 1520H the byte 03H. 

JRe Jump Relative 

Operation: PC ¢ PC + e 

:Format: 

Mnemonic: JR Operands: e 

Object Code: 

18 

I e-2: e-2: e-2: e-2: e-2: e-2; e-2 1 e-21 

Description: 

This instruction provides for unconditional branching to other segments of a 
program. The value of the displacement e is added to the Program Countt~r (PC) 
and the next instruction is fetched from the location designated by the new 
contents of the PC. This jump as measured from the address of the instruction 
opcode has a range of -- 126 to + 129 bytes. The assembler automatically 
adjusts for the twice incremented PC. 

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00 

Condition Bits Affected: None 

Example 1: 

To jump forward five locations from address 480, the following assembly 
language statement is used: 

JR $+5 

The resulting object code and final PC value is shown below: 

191 



SERIES I EDITOR/ASSEMBLER 

Location Instruction 
480 18 
481 03 
482 -- ¢ PC before jump 
483 
484 
485 ¢ PC after jump 

Note: when using an assembler, $ + 5 used above would normally be replaced 
by a label. 

Example 2: 

This program will skip around the NOP instruction. 

START JR, END 
NOP 

END 

JRC,e 
Operation: If C = 0, continue 

If C = 1, PC¢ PC+ e 

Format: 

Mnemonic: JR Operands: C, e 

Object Code: 

I o : o : : : : o : o : o I 38 

I e-2: e-2: e-2: e-2: e-2: e-2: e-2: e-2 j 

Description: 

Jump Relative 

This instruction provides for conditional branching to other segments of a 
program depending on the results of a test on the Carry Flag. If the flag is equal 
to a '1; the value of the displacement e is added to the Program Counter (PC) 
and the next instruction is fetched from the location designated by the new 
contents of the PC. The jump as measured from the address of the instruction 
opcode has a range of -126 to + 129 bytes. The assembler automatically 
adjusts for the twice incremented PC. 

If the flag is equal to a '0,' the next instruction to be executed is taken from the 
location following this instruction. 

192 



JUMP GROUP 

If condition is met: 

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00 

If condition is not met: 

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75 

Condition Bits Affected: None 

Example: 

The Carry Flag is set and it is required to jump back four locations from 480. 
The assembly language statement is: 

JR C, $-4 

The resulting object code and final PC value is shown below: 

Location Instruction 

47C ¢ PC after jump 
47D 
47E 
47F 

38 480 
481 
482 

FA (two's complement-6) 
¢ PC before jump 

JR NC,e 
Operation: If C = 1 , continue 

If C=0, PC¢PC+e 

:Format: 

Mnemonic: JR Operands: NC, e 

Object Code: 

I o : o : : 1 : o : o : o : o t 30 

/e-2'.e-2:e-2:e-2:e-2:e-2:e-2'.e-21 

Description: 

Jump Relative 

This instruction provides for conditional branching to other segments of a 
program depending on the results of a test on the Carry Flag. If the flag is equal 
to '0; the value of the displacement e is added to the Program Counter (PC) and 

193 



SERIES I EDITOR/ASSEMBLER 

the next instruction is fetched from the location designated by the new contents 
of the PC. The jump as measured from the address of the instruction opcode has 
a range of -· 126 to + 129 bytes. The assembler automatically adjusts for the 
twice incremented PC. 

lf the tlag is equal to a 'l ,' the next instrnction to be executed is taken from the 
location following this instruction. 

lf the condition is met: 

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00 

[f the condition is not met: 

M cycles: 7 T states: 7(4,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: l .75 

The Carry Flag is reset and it is required to repeat the jump instruction. 
The assembly language statement is: 

JR NC,$ 

The resulting object code and PC after the jump are shown below: 

Location Instruction 

480 30 Q PC after jump 
481 FD (two's complement- 2) 
482 - ¢ PC before jump 

Note: this instruction would cause an infinite loop in the program. 

JRZ,e Jump Relative 

Operation: 2 = 0, continue 
If Z = 1 , PC¢ PC + e 

Format: 

Mnemonic: JR Operands: Z, e 

Object Code: 

I o : o : 1 : o : : o : o : o I 28 

I e-2: e-2: e-2: e-2: e-2: e-2: e-2: e-2 / 

194 



JUMP GROUP 

Description: 

This instruction provides for conditional branching to other segments of a 
program depending on the results of a test on the Zero Flag. lf the flag is equal 
to a · 1; the value of the displacement e is added to the Program Counter (PC) 
and the next instruction is fetched from the location designated by the new 
contents of the PC. The jump as measured from the address of the instruction 
opcode has a range of 126 to + 129 bytes. The assembler automatically 
adjusts for the twice incremented PC. 

If the Zero Flag is equal to a '0 ,' the next instruction to be executed is taken 
from the location following this instruction. 

If the condition is met: 

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00 

If the condition is not met: 

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75 

Condition Bits Affected: None 

Example: 

The Zero Flag is set and it is required to jump forward five locations from 
address 300. The following assembly language statement is used: 

JR Z, $+5 

The resulting object code and final PC value is shown below: 

Location Instruction 

300 28 
301 03 
302 - <) PC before jump 
303 
304 
305 - <) PC after jump 

JR NZ,e Jump Relative 

Operation: If Z = 1 , continue 
If Z=0, PC¢PC+e 

Format: 

Mnemonic: JR Operands: NZ, e 

195 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

!o:o: 1 :o:o:o:o:ol 

1~2:~2:~2:~2:~2:~2:~2:~21 

Description: 

20 

This instruction provides for conditional branching to other segments of a 
program depending on the results of a test on the Zero Flag. If the flag is equal 
to a •0; the value of the displacement e is added to the Program Counter (PC) 
and the next instruction is fetched from the location designated by the new 
contents of the PC. The jump as measured from the address of the instruction 
opcode has a range of -126 to + 129 bytes. The assembler automatically 
adjusts for the twice incremented PC. 

If the Zero Flag is equal to a •1; the next instruction to be executed is taken 
from the location following this instruction. 

If the condition is met: 

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00 

If the condition is not met: 

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75 

Condition Bits Affected: None 

Example: 

The Zero Flag is reset and it is required to jump back four locations from 480. 
The assembly language statement is: 

JR NZ, $-4 

The resulting object code and final PC value is shown below: 

Location Instruction 

47C ¢ PC after jump 
47D 
47E 
47F 
480 20 
481 FA (two's complement-6) 
482 -¢ PC before jump 

196 



JUMP GROUP 

JP (HL) Jump 

Operation: PC Q HL 

.Format: 

Mnemonic: JP Operands: (BL) 

Object Code: 

Description: 

The Program Counter (register pair PC) is loaded with the contents of the HL 
register pair. The next instruction is fetched from the location designated by the 
new contents of the PC. 

M cycles: I T states: 4 4 MHz E.T.: l.00 

Condition Bits Affected: None 

Example 1: 

If the contents of the Program Counter are J000H and the contents of the HL 
register pair are 4800H, after the execution of 

JP (HL) 

the contents of the Program Counter will be 4800H. 

The program will jump to the instruction at address 4800H. 

Example 2: 

A typical software routine which uses JP (HL) is a jump table lookup program. 
Assume that n 16-bit addresses are listed in consecutive bytes of memory 
starting at address TBL. Also assume that the Accumulator contains a number 
from 0 to n-1 representing the routine to be jumped to. 

LD HL, TBL ; HL points to the first byte in the table. 
ADD A, A ; double A 
LD DE, 0 
LD E,A 
ADD HL. DE ; if A originally contained 5, then HL now points to the 

LD 
INC 
LD 
LD 
JP 

E, (HL) 
HL 
D, (HL) 
HL,DE 
(HL) 

5th address in the table 

; DE now contains the 5th address of the table 
: HL now contains the 5th address of the table 

197 



SERIES I EDITOR/ASSEMBLER 

JP (IX) JumP 

Operation: PC¢ IX 

Format: 

Mnemonic: JP Operands: (IX) 

Object Code: 

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD 

I 1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 I E9 

Description: 

The Program Counter (register pair PC) is loaded with the contents of the 
IX Register Pair (Index Register IX). The next instruction is fetched from the 
location designated by the new contents of the PC. 

M cycles: 2 T states: 8(4,4) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 2.00 

If the contents of the Program Counter are 1000H, and the contents of the 
IX Register Pair are 4800H, after the execution of 

JP (IX) 
the contents of the Program Counter will be 4800H. 

JP (IV) JumP 

Operation: PC¢ IV 

Format: 

Mnemonic: JP Operands: (IY) 

Object Code: 

198 



11:1:1:1:1:1:0:11 

11:1:1:0:1:0:0:11 

Description: 

FD 

E9 

The Program Counter (register pair PC) is loaded with the contents of the 
IY Register Pair (Index Register IY). The next instruction is fetched from the 
location designated by the new contents of the PC. 

M cycles: 2 T states: 8(4,4) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 2.00 

If the contents of the Program Counter are 1000H and the contents of the 
IY Register Pair are 4800H, after the execution of 

JP (IY) 

the contents of the Program Counter will be 4800H. 

JUMP GROUP 

DJNZe Decrement Jump Not Zero 

Operation: 

Format: 

Mnemonic: DJNZ Operands: e 

Object Code: 

1 o : o : o : 1 : o : o : o : o 1 

I e-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21 

Description: 

10 

The instruction is similar to the conditional jump instructions except that a 
register value is used to determine branching. The B register is decremented 
and if a non zero value remains, the value of the displacement e is added to 
the Program Counter (PC). The next instruction is fetched from the location 

199 



SERIES I EDITOR/ASSEMBLER 

designated by the new contents of the PC. The jump is measured from 
the address of the instruction opcode has a range of -126 to + 129 bytes. 
The assembler automatically adjusts for the twice incremented PC. 

If the result of decrementing leaves B with a zero value, the next instruction 
to be executed is taken from the location following this instruction. 

If B :#:0: 
M cycles: 3 

If B=0: 

T states: 13(5,3,5) 4 MHz E.T.: 3.25 

M cycles: 2 T states: 8(5,3) 4 MHz E.T.: 2.00 

Condition Bits Affected: None 

Example: 

A typical software routine is used to demonstrate the use of the DJNZ 
instruction. This routine moves a line from an input buffer (INBUF) to an output 
buffer (OUTBUF). It moves the bytes until it finds a carriage return, or until it 
has moved 80 bytes, whichever occurs first. 

LD B, 80 ; Set up counter 
LD HL, Inbuf ; Set up pointers 
LD DE, Outbuf 

LOOP: LD A, (HL) ; Get next byte from 
; input buffer 

LD (DE), A ; Store in output buffer 
CP 0DH ; Is it a CR? 
JR Z,DONE ; Yes finished 
INC HL ; Increment pointers 
INC DE 
DJNZ LOOP ; Loop back if 80 

; bytes have not 
; been moved 

DONE: 

200 



CALL AND RETURN GROUP 

Call and Return Group 

CALLnn 
Operation: (SP -1) ¢ PCH, (SP - 2) ¢ PCL, PC¢ nn 

Format: 

Mnemonic: CALL Operands: nn 

Object Code: 

11:1:0:0:1:1:0:11 

Jn:n:n:n:n:n:n:nl 

Jn:n:n:n:n:n:n:nl 

CD 

Note: The first of the two n operands in the assembled object code above is the 
least significant byte of a two-byte memory address. 

Description: 

After pushing the current contents of the Program Counter (PC) onto the top of 
the external memory stack, the operands nn are loaded into PC to point to the 
address in memory where the first opcode of a subroutine is to be fetched. (At 
the end of the subroutine, a RETum instruction can be used to return to the 
original program flow by popping the top of the stack back into PC.) The push 
is accomplished by first decrementing the current contents of the Stack Pointer 
(register pair SP), loading the high-order byte of the PC contents into the 
memory address now pointed to by the SP; then decrementing SP again, and 
loading the low-order byte of the PC contents into the top of stack. Note: 
Because this is a three-byte instruction, the Program Counter will have been 
incremented by three before the push is executed. 

M cycles: 5 T states: 17(4,3,4,3,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 4.25 

ff the contents of the Program Counter are 1A47H, the contents of the Stack 
Pointer are 3002H, and memory locations have the contents: 

201 



SERIES I EDITOR/ASSEMBLER 

Location Contents 

lA47H CDH 
1A48H 35H 
IA49H 211-1 

then if an instruction fetch sequence begins, the three-byte instruction C:D352 lH 
will be fetched to the CPU for execution. The mnemonic equivalent of this is 

CALL 2135H 

After the execution of this instruction, the contents of memory address 3001 H 
will be lAH, the contents of address 300v)H will be 4AH, the contents of the 
Stack Pointer will be 30,?0H, and the contents of the Program Counter will be 
2135H, pointing to the address of the first opcode of the subroutine now to be 
executed. 

Before: 

Stack Pointer 

3002 

Program Counter 
1A47 

After CALL 

Stack Pointer 

3000 

Program Counter 
2135 

Address 

3002 
3003 
3004 

2135H: 

Address 

3000 
3001 
3002 
3003 

Stack 

50 
1B 
3C 

Stack 

4A 
IA 
50 
lB 

CALL cc,nn 
Operation: IF CC TRUE: (SP - 1) Q PCH 

(SP-2) ¢ PCL, PC¢nn 

Format: 

Mnemonic: CALL Operands: cc, nn 

202 



CALL AND RETURN GROUP 

Object Code: 

i 1 : 1 >< cc >< 1 : o : o 1 

ln:n:n:n:n:n:n:nl 

ln:n:n:n:n:n:n:nl 

Note: The first of the two n operands in the assembled object code above is the 
least significant byte of the two-byte memory address. 

Description: 

If condition cc is true, this instruction pushes the current contents of the 
Program Counter (PC) onto the top of the external memory stack, then loads 
the operands nn into PC to point to the address in memory where the first 
opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETurn 
instruction can be used to return to the original program fl.ow by popping the top 
of the stack back into PC.) If condition cc is false, the Program Counter is 
incremented as usual, and the program continues with the next sequential 
instruction. The stack push is accomplished by first decrementing the current 
contents of the Stack Pointer (SP), loading the high-order byte of the PC 
contents into the memory address now pointed to by SP, then decrementing 
SP again, and loading the low-order byte of the PC contents into the top of the 
stack. Note: Because this is a three-byte instruction, the Program Counter will 
have been incremented by three before the push is executed. Condition cc is 
programmed as one of eight status bits which corresponds to condition bits in 
the Flag Register (register F). Those eight status bits are defined in the table 
below, which also specifies the corresponding cc bit fields in the assembled 
object code: 

Relevant 
cc Condition Flag 

000 NZ non-zero z (=0) 
001 Z zero z (= 1) 
010 NC non-carry C (=0) 
011 C carry C ( = 1) 
100 PO parity odd P/V(=0) 
101 PE parity even P/V( = 1) 
110 P sign positive s (=0) 
111 M sign negative s ( = 1) 

203 



SERIES I EDITOR/ASSEMBLER 

If cc is true: 

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz E.T.: 4.25 

If cc is false: 

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50 

Condition Bits Affected: None 

Example: 

If the C Flag in the F register is reset, the contents of the Program Counter are 
IA47H, the contents of the Stack Pointer are 3002H, and memory locations 
have the contents: 

Location 

lA47H 
lA48H 
1A49H 

Contents 

D4H 
35H 
21H 

then if an instruction fetch sequence begins, the three-byte instruction D4352 lH 
will be fetched to the CPU for execution. The mnemonic equivalent of this is 

CALL NC, 2135H 

After the execution of this instruction, the contents of memory address 3001H 
will be lAH, the contents of address 3000H will be 4AH, the contents of the 
Stack Pointer will be 3000H, and the contents of the Program Counter will be 
2135H, pointing to the address of the first opcode of the subroutine now to be 
executed. 

RET RETurn 

Operation: PCL ¢ (SP), PCH ¢(SP+ 1) 

Format: 

Mnemonic: RET Operands: 

Object Code: 

C9 

Description: 

Control is returned to the original program flow by popping the previous 
contents of the Program Counter (PC) off the top of the external memory stack, 
where they were pushed by the CALL instruction. This is accomplished by first 
loading the low-order byte of the PC with the contents of the memory address 

204 



CALL AND RETURN GROUP 

pointed to by the Stack Pointer (SP), then incrementing the SP and loading the 
high-order byte of the PC with the contents of the memory address now pointed 
to by the SP. (The SP is now incremented a second time.) On the following 
machine cycle the CPU will fetch the next program opcode from the location in 
memory now pointed to by the PC. 

M cycles: 3 T states: 10(4,3,3) 

Condition Bits Affected: None 

Example: 

4 MHz E.T.: 2.50 

If the contents of the Program Counter are 3535H, the contents of the Stack 
Pointer are 2000H, the contents of memory location 2000H are B5H, and the 
contents of memory location 2001H are 18H, then after the execution of 

RET 

the contents of the Stack Pointer will be 2002H and the contents of the Program 
Counter will be l8B5H, pointing to the address of the next program opcode to 
be fetched. 

Before: 

Program Counter Address Stack 

3535 2000 B5 
2001 18 
2002 2E 
2003 30 

Stack Pointer 
2000 

After RET: 

Program Counter Address Stack 

18B5 2002 2E 
2003 30 

Stack Pointer 
2002 

RETcc RETurn 

Operation: IF CC TRUE: PCL ¢ (SP), PCH ¢(SP+ 1) 

Format: 

Mnemonic: RET Operands: cc 

205 



SERIES I EDITOR/ASSEMBLER 

Object Code: 

Description: 

If condition cc is true, control is returned to the original program flow by 
popping the previous contents of the Program Counter (PC) off the lop of the 
external memory stack, where they \Vere pushed by the CALL instruclion. This 
is accomplished by first loading the low-order byte of the PC with the contents 
of the memory address pointed to by the Stack Pointer (SP), then incrementing 
the SP, and loading the high-order byte of the PC with the contents of the 
memory address now pointed to by the SP. (The SP is now incremented a 
second time.) On the following machine cycle the CPU will fetch the next 
program opcode from the location in memory now pointed to by the PC. If 
condition cc is false, the PC is simply incremented as usual, and the program 
continues with the next sequential instruction. Condition cc is programmed as 
one of eight status bits which correspond to condition bits in the Flag Register 
F). These eight status bits are defined in the table below, which also specifies 
the corresponding cc bit fields in the assembled object code. 

cc Condition 
000 NZ non-zero 
~}01 Z zero 
010 NC non-carry 
011 C carry 
1 I/") PO parity odd 
101 PE parity even 
110 P sign positive 
11 l M sign negative 

If cc is true: 

Relevant 
Flag 

Z ( = (1) 
Z (= 1) 
C ( =• 0) 
C (= I) 
P/V(=0) 
P/V( = I) 
S (=0) 
s ( = l) 

M cycles: 3 T states: 11(5,3,3) 

If cc is false: 

4 MHz E.T.: 2.75 

M cycles: I T states: 5 4 MHz E.T.: l.25 

Condition Bits Affected: None 

Example: 

lf the S flag in the F register is set, the contents of the Program Counter are 
3535H, the contents of the Stack Pointer are 2000H, the contents of memory 
location 2000H are B5H, and the contents of memory location 2001H are 18H, 
then after the execution of 

RET M 

206 



CALL AND RETURN GROUP 

the contents of the Stack Pointer will be 2002H and the contents of the Program 
Counter will be 18B5H, pointing to the address of the next program opcode to 
be fetched. 

RETI 
Operation: Return from interrupt 

Format: 

Mnemonic: RETI Operands: 

Object Code: 

I : : l O 0 ED 

4D 

Description: 

This instruction is used at the end of an interrupt service routine to: 

I . Restore the contents of the Program Counter (PC) (analogous to the RET 
instruction). 

2. To signal an I/0 device that the interrupt routine has been completed. The 
RETI instruction facilitates the nesting of interrupts, allowing higher priority 
devices to suspend service of lower priority service routines. This instruction 
also resets the IFFl and IFF2 flip flops. 

M cycles: 4 T states: 14(4.4,3,3) 4 MHz E.T.: 3.50 

Condition Bits Affected: None 

Example: 

Given: Two interrupting devices, A and B, connected in a daisy chain 
configuration with A having a higher priority than B. 

+ A B 

~ IEI IEO H IEI IEO f-
INT-~1--~1 

B generates an interrupt and is acknowledged. (The intetTupt enable out, IEO, 
of B goes low, bloc king any lower priority devices from interrupting while B is 
being serviced). Then A generates an interrupt, suspending service of B. (The 

207 



SERIES I EDITOR/ASSEMBLER 

IEO of A goes 'low' indicating that a higher priority device is being serviced.) 
The A routine is completed and a RETI is issued resetting the IEO of A, 
allowing the B routine to continue. A second RETI is issued on completion of 
the B routine and the IEO of B is reset (high), allowing lower priority devices 
interrupt access. 

RETN 
Operation: Return from non maskable interrupt 

Format: 

Mnemonic: RETN Operands: 

Object Code: 

11:1:1:0:1:1:0:11 

10:1:0:0:0:1:0:11 

Description: 

ED 

45 

Used at the end of a service routine for a non maskable interrupt, this instruction 
executes an unconditional return which functions identically to the RET 
instruction. That is, the previously stored contents of the Program Counter (PC) 
are popped off the top of the external memory stack; the low-order byte of PC is 
loaded with the contents of the memory location pointed to by the Stack Pointer 
(SP), SP is incremented, the high-order byte of PC is loaded with the contents 
of the memory location now pointed to by SP, and SP is incremented again. 
Control is now returned to the original program flow: on the following machine 
cycle the CPU will fetch the next opcode from the location in memory now 
pointed to by the PC. Also the state of IFF2 is copied back into IFFl to the state 
it had prior to the acceptance of the NMI. 

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50 

Condition Bits Affected: None 

Example: 

If the contents of the Stack Pointer are 1000H and the contents of the Program 
Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the 
CPU will ignore the next instruction and will instead restart to memory address 
0066H. That is, the current Program Counter contents of 1A45H will be pushed 
onto the external stack address of 0FFFH and 0FFEH, high order byte first, and 

208 



8166H will be loaded oato th, Program Counter. That address begins an 
· »Er'1"'111tservice routine whlch ~s with REl'N instmctioa. Upon the ex«;Cutioa 
of ,,. the fQffl'l« Program Counter contents are popped· off the extenia1 
memory stack'; low-otder first. resulting in a Stack Pointer contents again of 
lMH. The program low eontinues where it left off with an opcode feteh to 
address lA45H. 

RSTp ReSTart 

Format: 
MnelllOllic:RST ()penmds:P 

Object Code: 

/1:1:t:t:t:1:1:11 

Description: 

The current Program Counter (PC) contents are pushed onto the external 
memory stack, and the page zero memory location given by operand p is loaded 
into the PC. Program execution then begins with the opeode in the address now 
pointed to by PC. The push is performed by first decrementing the contents of 
the Stack Pointer (SP), loading the high-order byte of PC into the memory 
address now pointed to by SP, decrementing SP again, and loading the low
order byte of PC into the address now pointed to by SP. The ReSTart instruction 
allows fot !il Call to a subroutine at one of eight addresses as shown in the table 
below. The operand p is assembled into the object code using the t column of 
the table. Note: Since all addresses are in page zero of memory, the high order 
byte of PC is loaded with 00H. The number selected from the "p" column of 
the table is loaded into the low-order byte of PC. 
At the end of the subroutiri~ a RETum instruction can be used to return to the 

1 original program by popping the top of the stack back into PC. 
p t 

00H M 
'8H 001 
10H 010 
18H 011 
20H 100 
28H UH 
30H 110 
38H 111 

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75 



SERIES I EDITOR/ASSEMBLER 

Example: 

If the contents of the Program Counter are 15B3H, after the execution of 

RST 18H (Object code 11011111) 
the PC will contain 0018H, as the address of the next opcode to be fetched, and 
the top number on the stack will be 15B3H. 

210 



INPUT AND OUTPUT GROUP 

Input and Output Group 

IN A,(n) INput 

Operation: A¢ (n) 

Format: 

Mnemonic: IN Operands: A, (n) 

Object Code: 

Ll __ o 0 1 I DB 

l~-T~T~-. 
n n n 11 11 I 

I 

Description: 

The number of the input port is n. Data is input to register A. The operand n is 
placed on the bottom half (A0 through A7) of the address bus to select the l/O 
device at one of 256 possible ports. The contents of the Accumulator also 
appear on the top half (A8 through A 15) of the address bus at this time. Then 
one byte from the selected port is placed on the data bus and written into the 
Accumulator (register A) in the CPU. 

M cycles: 3 T states: 11(4.3.4) 4 MHz E.T.: 

Condition Bits Affected: None 

Example: 

If the contents of the Accumulator are 23H and the byte 7BH is available at the 
peripheral device mapped to l/O port address 01H, then after the execution of 

IN A,(01H) 

the Accumulator will contain 7BH. 

211 



SERIES I EDITOR/ASSEMBLER 

IN r,(C) INput 

Operation: r ¢ (C) 

Format: 

Mnemonic: IN Operands: r, (C) 

Object Code: 

11:1:1:0:1:1:0:11 ED 

lo:1:r:r:r:0:0:01 

Description: 

Register C contains the number of the input port. Data is input to register r. 
The contents of register C are placed on the bottom half (A0 through A 7) of the 
address bus to select the 1/0 device at one of 256 possible ports. The contents of 
Register Bare placed on the top half (A8 through Al5) of the address bus at this 
time. Then one byte from the selected port is placed on the data bus and written 
into register r in the CPU. Register r identifies any of the CPU registers shown 
in the following table, which also shows the corresponding three-bit "r" field 
for each. The flags will be affected, checking the input data. 

Register r 

B 000 
C 001 
D 010 
E 011 
H 100 
L 101 
A 111 

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00 

Condition Bits Affected: 

S: Set if input data is negative; reset otherwise 
Z: Set if input data is zero; reset otherwise 
H: Reset 
P/V: Set if parity is even; reset otherwise 
N: Reset 
C: Not affected 

212 



INPUT AND OUTPUT GROUP 

Example: 

If the contents of register C are 07H, the contents of register B are 10H, and the 
byte 7BH is available at the peripheral device mapped to 1/0 port address 07H, 
then after the execution of 
IN D,(C) 

register D will contain 7BH 

A typical use of the IN r, (C) instruction is for polled 1/0. The following 
program continually polls or inputs data from port FF until a non-zero number 
appears. The program then reads in data from port FE. In this application, port 
FF is used as a data ready signal for port FE. 

LD C, 0FFH ; C points at port FF 
LOOP IN B, (C) ; input port FF to register B 

JR Z, LOOP ; continue polling until not zero 
IN A, (0FEH) ; input port FE to register A 

INI INput & Increment 

Operation: (HL)¢(C), B¢B-1, HL¢HL+1 

Format: 

Mnemonic: INI Operands: 

Object Code: 

I : : 1 : 0 : 1 : 1 : 0 : 1 I ED 

I 1 : 0 : 1 : 0 : 0 : 0 : 1 : 0 I A2 

Description: 

Register C contains the number of the input port. Data input is placed in 
memory at the address pointed at by HL. The contents of register C are placed 
on the bottom half (A0 through A 7) of the address bus to select the 1/0 device at 
one of 256 possible ports. Register B may be used as a byte counter, and its 
contents are placed on the top half (A8 through A15) of the address bus at this 
time. Then one byte from the selected port is placed on the data bus and written 
to the CPU. The contents of the HL register pair are then placed on the address 
bus and the input byte is written into the corresponding location of memory. 
Finally the byte counter is decremented and register pair HL is incremented. 

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00 

213 



SERIES I EDITOR/ASSEMBLER 

Condition Hits Affected: 

S: Unknown 
Z: Set if B -· t =0 t1: reset otherwise 
H: Unknovvn 
P/V: Unknown 
N: Set 
C: Not afkcted 

Exmnple: 

If the contents of register C arc 07H, the contents of register B are l0H. the 
contenl.s of the HL register pair an: H11/i0I-L and the byte 7BH is available at the 
peripheral device mapped to I/0 port address t)7H, then after the execution of 

lN! 

rnemory location H}(/11/)H will contain 7BH, the HL register pair will contain 
l~l0HL and register B will contain OFtL 

The following progran1 will input data from input ports l through 80 and place 
the data into a buffer in memory. 

LOOP 

INIR 

LD 
LD 
LD 
lNC 
INl 
JP 

B, 80 
c,o 
HL. BUFF 
C 

NZ, LOOP 

INput Increment & Repeat 

Operation: (HL)¢(C), B¢B--1, HL¢HL+1 

F'ormat: 

Mnemonic: INIR Operands: 

Object Code: 

0 ED 

B2 

214 



INPUT AND OUTPUT GROUP 

Description: 

Register C contains the number of the input port. The data input is placed in 
memory at the address pointed at. by the HL register pair. The contents of 
register C are placed on the bottom half (A0 through A 7) of the address bus to 
select the l/O device at one of 256 possible ports. Register B is used as a byte 
counter, and its contents are placed on the top half (A8 through A 15) of the 
address bus al this time. Then one byte from the selected port is placed on 
the data bus and written to the CPU. Tbe contents of the HL register pair are 
placed on the address bus and the input byte is written into the c01Tcsponding 
location of memory. Then register pair HL is incremented, the byte counter is 
decremented. If decrementing causes B to go to zero. the instruction is 
terminated. If B is not zero, the PC is decremented by two and the instruction 
repeated. Note that if B is set to zero prior to instruction execution. 256 bytes 
of data will be input. Also interrupts will be recognized after each data transfer. 

If B * 0: 

M cycles: 5 
If B =0: 

M cycles: 4 

T states: 21(4,5,3,4.5) 

T states: 16(4.5.3,4) 

Condition Hits Affected: 

S: Unknown 
Z: Set 
H: Unknown 
P/V: Unknown 
N: Set 
C: Not affected 

Example: 

4 MHz E.T.: 5.25 

4 MHz E.T.: 4.V)0 

If the contents of register C arc 07H, the contents of register B are 03H, the 
contents of the HL register pair are 1000H, and the following sequence of 
bytes are available at the peripheral device mapped to l/O port of address 07H: 

51H 
A9H 
03H 

then after the execution of 

lNIR 

the HL register pair will contain 1003H. register B will contain zero. and 
memory locations will have contents as follows: 

Location Contents 

1000H 51H 
1001H A9H 
1002H 03H 

215 



SERIES I EDITOR/ASSEMBLER 

Here is a prograrn to input 80 bytes from I/0 port number FF and put them into 
an 80'"byte buffer starting al address BUFF. 

LD 
LD 
LD 
IN IR 

HL, BUFF 
B, 80 
C,OFFH 

; HL points at first byte of buffer 
; load byte counter 
; port FF 
; input 80 bytes 

Note: this assmnes that the input port can be synchronized with the input 
instructions. 

IND INput & Decrement 

Operation: (HL) Q (C), B ¢ B-1, HL¢ HL-·-1 

Format: 

Mnemonic: IND Operands: 

Object Code: 

1 0 0 ED 

0 0 0 0 AA 

Description: 

The contents of register C are placed on the bottom half (A0 through A 7) of the 
address bus to select the 1/0 device at one of 256 possible ports. Register B may 
be used as a byte counter, and its contents are placed on the top half (A8 
through A 15) of the address bus at this time. Then one byte from the selected 
port is placed on the data bus and written to the CPU. The contents of the HL 
register pair are placed on the address bus and the input byte is written into the 
corresponding location of memory. Finally the byte counter and register pair HL 
are decremented. 

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00 

Condition Bits Affected: 

S: Unknown 
Z: Set if B -- l = 0; reset otherwise 
H: Unknown 
P/V: Unknown 
N: Set 
C: Not affected 

216 



INPUT AND OUTPUT GROUP 

Example: 

If the contents of register Care ~l7H, the contents of register Bare 10H. the 
conknls of the BL register pair are 1(1(~()H, and the byte 7BH is available at the 
peripheral device mapped to l/O port address 071-L then after the execution of 

lND 

memory location 10\)0H will contain 7BH, the HL register pair will contain 
0FFFH, and register B will contain 0FH. 

INDR INput Decrement & Repeat 

Operation: (HL) Q (C), B QB --1, HL¢HL--1 

l<"ormat: 

Mnemonic: INDR 

Objcd Code: 
r·-7·--·-r-·-r· 
\ l l l 0 
I I I 

1----, 
I l 0 
i 

Description: 

Operands: 

0 ED 

0 0 BA 

The contents of register C are placed on the bottom half (A0 through A7) of the 
address bus to select the l/O device at one of 256 possible ports. Register B is 
used as a byte counter, and its contents are placed on the top half (A8 through 
A 15) of the address bus at this time. Then one byte from the selected port 
is placed on the data bus and written to the CPU. The contents of the HL 
register pair are placed on the address bus and the input byte is written into 
the corresponding location of memory. Then HL and the byte counter 
are decremented. If decrementing causes B to go to zero, the instruction is 
terminated. If B is not zero, the PC is decremented by two and the instruction 
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of 
data will be input. Also interrupts will be recognized after each data transfer. 

If B ;t: 0: 

M cycles: 5 

If B =0: 

M cycles: 4 

T states: 21(4,5.3,4,5) 4 MHz E.T.: 5.25 

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00 

217 



SERIES I EDITOR/ASSEMBLER 

Condition Bits Affected: 

S: Unknown 
Z: Set 
H: Unknown 
P/V: Unknown 
N: Set 
C: Not affected 

Example: 

[f the contents of register C are (1)7H, the contents of register B are 03H, the 
contents of the HL register pair are l()<)0H. and the following sequence of 
are available at the peripheral device mapped to l/0 port address 07H: 

51 H 
A9H 
03H 

then after the execution of 

INDR 

the HL register pair will contain 0FFDH, register B will contain zero, and 
memory locations will have contents as follows: 

Location Contents 

0FFEH 03H 
0FFFH A9H 
lv)00H 51H 

OUT (n),A OUTput 

Operation: ( n) ¢ A 

Format: 

Mnemonic: OUT Operands: (n), A 

Object Code: 

1 : : o : : o : o : : D3 

I n : n : n : n : n : n : n : n I 

218 



INPUT AND OUTPUT ROUP 
11111 JIIMIHll.i 

Description: 

The operand n is placed on the bottom half (A~) through A 7) of the address 
bus to select the 1/0 device at one of 256 possible ports. The contents of the 
Accumulator (register A) also appear on the top half (A8 through A 15) of the 
address bus at this time. Then the byte contained in the Accumulator is placed 
on the data bus and written into the selected peripheral device. 

M cycles: 3 T states: 11(4,3,4) 4 MHz E.T.: 2.75 

Condition Bits Affected: None 

Example: 

If the contents of the Accumulator are 23H. then after the execution of 

OUT t~IH.A 

the byte 23H will have been written to the peripheral device mapped to VO port 
address 01H. 

OUT (C),r OUTput 

Operation: (C) Qr 

F'ormat: 

Mnemonic: OUT Operands: (C), r 

Object Code: 

I : : : o: : : o: ~ ED 

[o: :r:r>·:o:o: I 

Description: 

The contents of register C are placed on the bottom half (A0 through A 7) of the 
address bus to select the l/0 device at one of 256 possible ports. The contents of 
Register B are placed on the top half (A8 through A 15) of the address bus at this 
time. Then the byte contained in register r is placed on the data bus and 
into the selected peripheral device. Register r identifies any of the CPU registers 
shown in the following table, which also shows the corresponding three-bit · 'r" 
field for each which appears in the assembled object code: 

219 



SERIES I EDITOR/ASSEMBLER 

Register r 

B 000 
C 0~H 
D 010 
E 011 
H l00 
L 101 
A 111 

M cycles: 3 T states: 12(4,4,4) 4 Ml-fz E.T.: 3.00 

Condition Bits Affected: None 

Example: 

lf the contents of register C are 01 H and the contents of register D are 5AH, 
after the execution of 

OUT (C),D 

the byte 5AH will have been written to the peripheral device mapped to 1/0 port 
address 01 H. 

OUTI OUTput & Increment 

Operation: (C)¢(HL), B¢B-1, HL¢HL+1 

Format: 

Mnemonic: OUTI Operands: 

Object Code: 

I : : >< : : 0 : I ED 

1 ;ci; :a:o:o: : I A3 

Description: 

The contents of the HL register pair are placed on the address bus to select a 
location in memory. The byte contained in this memory location is temporarily 
stored in the CPU. Then, after the byte counter (B) is decremented, the contents 
of register C are placed on the bottom half (A0 through A 7) of the address bus 
to select the 1/0 device at one of 256 possible ports. Register B may be used as 
a byte counter, and its decremented value is placed on the top half (A8 through 

220 



INPUT AND OUTPUT GROUP 

A 15) of the address bus. The byte to be output i& placed on the data bus and 
written into selected peripheral device. Finally the register pair HL is 
incremented. 

i\1 cycles: 4 'f stales: 16(4,5,3.4) 4 MHz ET: 4.00 

Condition Hits Affected: 

S: Unknown 
Z: Set if B - I = (); reset otherwise 
H: Unknown 
P/V: Unknown 
N: Set 
C: Not affected 

Example: 

lf the contents of register C arc 07H, the contents of register Bare 10H, the 
contents of the HL register pair are 10~)(1H, and the contents of memory address 
l()~)H are 59H, then after the execution of 

OUTI 

register B will contain ~JFH, the HL register pair will contain 1001H, and the 
byte 59H will have been written to the peripheral device 111apped to l/0 port 
address 07H. 

OTIR OuTput Increment & Repeat 

Operation: (C)¢(HL), B¢B-1, HL¢HL+1 

:Format: 

Mnemonic: OTIR Operands: 

Object Code: 

: : >< ED 

0 0 0 B3 

Description: 

The contents of the HL register pair are placed on the address bus to select a 
location in memory. The byte contained in this memory location is temporarily 
stored in the CPU. Then, after the byte counter (B) is decremented, the contents 
of register C are placed on the bottom half (A0 through A 7) of the address bus 

221 



SERIES I EDITOR/ASSEMBLER 
-l!D~ -Ill ill I IIIIIIRll!illllll-1111!1 

to sdect the UO device at one of 256 possible porb. Register B may be used as 
a byte counter, and its decrernented value is placed on the top half (A8 through 
A l.5) of the address bus at this tiirn!. Next the byte to be output is placed on the 
dnta bus and written into the selected peripheral device. Then register pair HL 
is incremented. If the decremented B register is not zero. the Program Counter 
(PC) is decremented by two and lhe instruction is repeated. ff B has gone to 
1ero, the instruction is terrninated. Note that if B is set to zero prior to 
instruction execution, the instruction will output 256 bytes of data. Also. 
)ntc:rrupts will be recognized after each data transfer. 

!f B t 0: 

\il cycles: 5 

rrB===G}: 

~1 1· ' .,v eye es: 1+ 

T stat.es: 2!(4,5,3,4,5) 

T states: 16(4,5.3,4) 

Condition nits Affected: 

S: Unknown 
Z: Set 
H: Unknown 
P/V: Unknown 
N· Set. 
C Not affected 

Example: 

4 MHz E.T.: 5.25 

4 J'v1Hz E.T.: 4.l)~) 

If the cun!ents of regi~ler Care l17H, the contents of register B are 03H, the 
contenti; of the HL register pair are 1000H. and memory locations have the 
following contents: 

Location Contents 

Hj()OH 5JH 
rn0m A9H 
H)02H 03H 

then after the execution of 

OTm 

the BL register pair will contain I0v)3H, register B will contain zero, and a 
group of bytes will have been written to the peripheral device mapped to I/O 
port address (flH in !he following sequence: 

5!H 
A9H 
03H 

222 



INPUT AND OUTPUT GROUP 

OUTD OUTput & Decrement 

Oper·atfon: (C)¢(HL), B¢B---1, HL¢HL--1 

l•'ormat: 

Mnemonic: OUTD Operands: 

Objcd Code: 

l l IO l l O II [ 
---r·-···· ! - -- i --- I ····1· , 

__ L ___ i .•. L ... L_J 
ED 

0 0 AB 

Description: 

The contents of the HL register pair are placed on the address bus to select a 
location in memory. The hyte contained in this memory location is temporarily 
stored in the CPU. Then. after the byte counter (B) is decremented, the contents 
of register C are placed on the bottom half (A0 through A 7) of the address bus 
to select the I/0 device at one of 256 possible ports. Register B may he used as 
a byte counter, and its decremented value is placed on the top half (A8 through 
A of the address bus at this time. Next the byte to be output is placed on the 
data bus and written into the selected peripheral device. Finally the register pair 
HL is incremented. 

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00 

Condition Bits Affected: 

S: Unknown 
Z: Set if B - l 0-= 0; reset otherwise 
H: Unknown 
P;Y: Unknown 
N: Set 
C: Not affected 

Example: 

If tbe contents of register C are 07H, the contents of register B are 10H, the 
contents of the HL register pair are 1000H, and the contents of memory location 
](1)(10H are 59H, after the execution of 

OUTD 

register B will contain 0FH, the HL register pair will contain 0FFFH, and the 
byte 59H will have been written to the peripheral device mapped to 1/0 port 
address 07H. 

223 



SERIES I EDITOR/ASSEMBLER 

OTDR OUTput Decrement & Repeat 

Operation: (C} Q (HL), B Q B-1, HL¢ HL--1 

Format: 

Mnemonic: OTDI?. 

Object Code: 

- r·· 
0 l 

Descritltion: 

0 

Operands: 

0 ED 

0 BB 

The contents of the HL register pair are placed on the address bus to select a 
location in memory. The byte contained in this memory location is temporarily 
stored in the CPU. Then, after the byte counter (B) is decremented, the contents 
of register Care placed on the bottom half (AO through A 7) of the address bus 
to select the 1/0 device at one of 256 possible ports. Register B may be used as 
a byte counter, and its decremented value is placed on the top half (A8 through 
A 15) of the address bus at this time. Next the byte to be output is placed on the 
data bus and written into the selected peripheral device. Then register pair HL is 
decremented and if the decremented B register is not zero, the Program Counter 
(PC) is decremented by 2 and the instruction is repeated. If B has gone to zero, 
the instruction is terminated. Note that if B is set to zero p1ior to instruction 
execution, the instruction will output 256 byte of data. Also, interrupts will be 
recognized after each data transfer. 

If B 1,0: 

M cycles: 5 

lf B =l?: 

M cycles: 4 

T states: 21(4,5,3,4,5) 

T states: 16(4,5,3.4) 

Condition Bits Affected: 

S: Unknown 
Z: Set 
H: Unknown 
P/V: Unknown 
N· Set 
C: Not affected 

224 

4 MHz ET.: 5.25 

4 MHz E.T.: 4.00 



INPUT AND OUTPUT GROUP 

Example: 

lf the contents of register Care 07H, the contents of register 13 are mtL the 
contents of the HL register pair are 101i)0lL and memory locations have the 
following contents: 

Location Contents 
0FFEH 51H 
0FFFH A9H 
1000H e)3H 

then after the execution of 

OTDR 
the HL register pair will contain 0FFDH, register B will contain zero. and a 
group of bytes will have been written to the peripheral device mapped to l/0 
port address 07H in the following sequence: 

03H 
A9H 
5JH 

225 





Appendix A/Using the TPSRC Utility 
(Disk Syste1ns Only) 
This utility allows disk systems to: 

A. Read the source tapes created by the tape version of the Editor/ Assembler, 
and copy these to disk. 

B. Copy a disk object file (machine-language program) onto tape in the 
"SYSTEM" format. 

Under TRSDOS READY, type TPSRC (INTER). The program will start and ask you to 
select either ( l) source tape input or (2) object tape output. 

Source Tape Input 
If you type l Ct:NJ!ID, the program will tell you to get the recorder ready. Get 
your recorder ready to play the source tape (created by the w command of the 
"fape Editor/ Assembler). Then press (ENTEH). 

TPSRC will read the tape and create a disk file with the same name as the tape 
and with the extension 1SRC. The resultant file may be loaded by the Disk Editor/ 
Assembler (L command). 

Object Tape Output 
If you type 2 (ENTER). the program will ask you for the name of the disk file. 
(The file must be in the conect program format, as created by the Disk Editor/ 
Assembler A command.) Type in the file name and press ((NltID. 

Next, TPSRC will prompt you to get the recorder ready. Using a blank tape, 
prepare the recorder to record. Then press (ENTER). TPSRC will then write out the 
object tape. The object tape will be given the name of the disk object file. 

The resultant tape is in the SYSTEM format, and may be loaded according to the 
instructions in Section 5. 

APPENDIX 

227 



SERIES I EDITOR/ASSEMBLER 

Appendix B/Model I Subroutines 

These are subroutines which are in the Read Only Memory (ROM) of your Model 
I Level I or Level II BASIC Computer. You can call them using an assembly 
language program. 

The left-hand column lists the subroutines. The next columns demonstrate 
example assembly language programs which call these subroutines. 

If you have a Model I disk system, you can also call subroutines which are a 
part of your TRS-80 Disk Operating System (TRSOOS). These are listed in your 
Model I ''TRSDOS Disk BASIC Reference Manual.'' 

The Model III BASIC subroutines are listed in the ''TRS-80 Model III Operation 
and BASIC Language Reference Manual.'' (See the Appendix of the Operation 
Section.) The Model III msoos subroutines are in the "Technical Information" 
of the "Model III Disk System's Owners Manual." 

Level I BASIC Subroutines 

KEYBOARD SCAN WAIT CALL 12lBlll2lH 
A-register contains input JR Z ,WAIT 
byte; input byte is displayed 
at current cursor. 

DISPLAY BYTE PUSH DE 
AT CURSOR PUSH IY 

LD A ,212lH 
RST 112lH 
POP IY 
POP DE 

TURN ON CALL 12lFE8H 
CASSETTE 

' 
On board cassette is 
turned on via remote plug 

SAVE MEMORY CALL 12JFE8H 
TO CASSETTE LO HL ,712ll2lH 

Cassette is LD DE ,7112ll2lH 
turned off CALL 12JF llBH 

228 

;scAN 
iZ= 1 IF KB CLEAR 

iMUST SAlJE 
; DE & IY 
iBYTE TO DISPLAY 
;DISPLAY BYTE 
iRESTORE 
; DE & IY 

;TURN ON CASSETTE 

iTURN ON CASSETTE 
;START ADDRESS 
;LAST+l ADDRESS 
iSAVE IT 



LOAD MEMORY FROM 
CASSETTE 

On return 
HL = last + 1 address 
z =.= () if 

checksum error 
Z :::::: 1 if 

checksum OK 
Cassette is 
turned off 

RETURN TO 
LEVEL I BASIC 

LeYel II BASIC Subroutines 

TURN ON CURSOR 
CHARACTER 

KEYBOARD SCAN 
A-register contains byte when 
loop falls through. AGN 
Byte is not displayed on 
Screen! 

DISPLAY BYTE 
AT CURSOR 

CALL 0EFllH 

Press Re;et 
JP !Zl 
JP 01C9H 

PUSH DE 
PUSH IY 
LD A,0EH 
CALL 33H 
POP IY 
POP DE 

PUSH DE 
PUSH IY 
CALL 2BH 
OR A 
JR Z,AGN 
POP IY 
POP DE 

PUSH DE 
PUSH IY 
LD A,20H 
CALL 33H 
POP I Y 
POP DE 

;A-REGISTER SPECIFIES CASSETTE (0 OR 1) 

DEFINE DRIVE 

WRITE LEADER 
AND SYNC BYTE 

TURN OFF CASSETTE 

LD 
CALL 

CALL 

CALL 

A tl2l 
0212H 

0287H 

01FBH 

APPENDIX 

iTURN ON & READ 

i POWER UP 
iRE-ENTRY WITH READY 

; MUST SAt)E 
i DE & I Y 
;0EH IS CURSOR BYTE 
iD I SPLAY ROUT I NE 
;RESTORE 
i DE & IY 

iMUST SAVE 
i DE &, I Y 
iSCAN ROUTINE 
iA=0 IF KB CLEAR 
;BRANCH IF NO BYTE 
iRESTORE 
; DE & I Y 

; MUST SAi.iE 
; DE & I Y 
iBYTE TO DISPLAY 
iDISPLAY 
iRESTORE 
i DE &, I Y 

iON BOARD CASSETTE 
iDEF I NE DR Il.lE 

229 



SERIES I EDITOR/ASSEMBLER 

SA VE MEM()R Y 
TO CASSETTE 

User must CALL 264H often 
enough to keep up with 500 
baud. Timing is automatic. 

LOOK FOR LEADER 
AND SYNC BYTE 

LOAD MEMORY FROM 
CASSETTE 

Your prograrn must CALL 
0235H often enough to keep 
up with 500 baud, and must 
<lo its own checksum if 
desired. A-register contains 
byte read. The user must turn 
off the cassette (CALL 
01 F8H) when all bytes have 
been read. 

RETURN TO 
LEVEL U BASIC 

OUTPUT TO LINE PRINTER 
(LEVEL !I ONLY) 

230 

PRTOUT 

PRTLPB 

LD A,0 
CALL 0212H 
CALL 0287H 
LO A,20H 
CALL 0264H 

CALL 01F8H 

CALL 029GH 

LD A ,0 
CALL 0212H 
CALL 0298H 
CALL 0235H 

Press RESET 
JP 0 
JP 1A19H 

E;O; 
LO HL137E8H 

LD D dHLl 
BIT 7,D 
JP NZ,PRTLPB 
LD (HL) ,A 
E\'" ;\ /\ 

RET 

;oN BOARD CASSETTE 
iDEF I NE DR l l,IE 
iWRITE LEADER 
iBYTE TO RECORD 
iOUTPUT BYTE 

iCASSETTE OFF 

iDEF I NE DR I l.JE 
iFIND SYNC BYTE 
iREAD ONE BYTE 

; LI KE POWER UP 
iRE-ENTRY 

iPUT ASCII BYTE 
iA-REGISTER AND 

PRTOUT 
iBUSY CONDIT I ON 

FOR 

i SAl,JE REGS, 
iLOAD LP POINTER 

IN HL 
iLOAD LP STATUS 
:IS THE PRINTER 
BUSY? 

iOUTPUT BYTE TO 
PRINTER 

IN 
CALL 

TESTE 

BYTE 



Appendix C / Z-80 Status Indicators (Flags) 
The flag register (F and F') supplies information to the user regarding the status 
of the z-so at any given time. The bit positions for each flag are shown below: 

7 6 5 4 3 2 1 0 

s I z I X I H I X I P/V I N I C 

WHERE: 

C = CARRY FLAG 
N = ADD/SUBTRACT FLAG 
P/V = PARITY/OVERFLOW FLAG 
H = HALF-CARRY FLAG 
Z = ZERO FLAG 
S = SIGN FLAG 
X = NOT USED 

Each of the two z-so Flag Registers contains 6 bits of status information which are 
set or reset by CPU operations. (Bits 3 and 5 are not used.) Four of these bits are 
testable (C,P/V,Z and s) for use with conditional jump, call or return instructions. 
Two flags are not testable (H,N) and are used for BCD arithmetic. 

Carry Flag (C) 

The carry bit is set or reset depending on the operation begin performed. For' ADD' 
instructions that generate a carry and 'SUBTRACT' instructions that generate no bor
row, the Carry Flag will be set. The Carry Flag is reset by an ADD that does not 
generate a carry and a 'SUBTRACT' that generates a borrow. This saved carry facil
itates software routines for extended precision arithmetic. Also, the 'DAA' instruc
tion will set the Carry Flag if the conditions for making the decimal adjustment 
are met. 

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the 
LSB and MSB for any register or memory location. During instructions RLCA, RLC'S 
and SLA'S, the carry contains the last value shifted out of bit 7 of any register or 
memory location. During instructions RRCA, RRC's, SRA'S and SRL'S the carry con
tains the last value shifted out of bit O of any register or memory location. 

For the logical instructions AND'S, OR'S and X0R's, the carry will be reset. 

The Carry Flag can also be set (scF) and complemented (CCF). 

Add/Subtract Flag (N) 

This flag is used by the decimal adjust accumulator instruction (DAA) to distingiush 
between 'ADD' and 'SUBTRACT, instructions. For all 'ADD' instructions, N will be 
set to a 'o.' For all 'SUBTRACT' instructions, N will be set to a "1.'' 

APPENDIX 

231 



SERIES I EDITOR/ASSEMBLER 

Parity/Ovft.rtlow Flag (P/V) 

This Hag is set to a paiiicufrff state depending on the operation being performed. 

For arithmetic operations, this flag indicates an overflow condition when the result 
in the Accumulator is greater than the rnaximum possible number ( + 127) or is 
less than the minimum possible number ( - 128). This overflow condition can be 
determini;:d by examining the sign bits of the operands. 

For addition, operands with different signs will never cause ovetilow. When add
ing operands with like signs and the result has a different sign. the overflow flag 
is set. For example: 

+ 120 ,.-= 0 l l 1 l 000 
+ 105 - 0110 1001 

·+ lllOOOOl 

ADDEND 
AUGEND 
( ·-·· 95) SUM 

The two numbers added together has resulted in a number that exceeds + 127 and 
1.he two positive operands has resulted in a negative number ( - 95) which is incor
rect. The overfiow flag is therefore set. 

For subtraction, overflow can occur for operands of unlike signs. Operands of like 
sign will never cause overflow. For example: 

+ 127 01 l l Ii l l MINUEND 
( ··-_) _64 _ _1_100 0000 ___ ...,.cS=-c'L~lB=--· ,·"--'rRc-=" A~H=E"-'N-"'--D 

+l9l 1011 llll DIFFERENCE 

The rninuend has changed from a positive to a negative, giving an incorrect 
difference. Overflow is therefore set. 

Another method predicting an overliow is to observe the carry into and out of 
the bit. ff there is a caITy in and no carry out, or if there is no carry in and a 

then overflow has occurred. 

This flag is also used \Vith logical operations and rotate instructions to indicate the 
parity of the result. The number of' 1 • bits in a byte are counted. If the total is odd, 
'orm' parity (P 0-= o) is flagged. If the total is even, 'EVEN' parity is flagged (P = 1). 

search instructions (CPLCPIR,CPD,CPDR) and block transfer instructions 
(U)l,LDIR.LDDJ.DDR) the r/v flag monitors the state of the byte count register (Be). 
When decrernenting, the byte counter results in a zero value, the flag is reset to 0, 
otherwise the flag is a Logic 1. 

During LD A.I and LD A,R instructions, the P/v flag will be set with the contents of 
the inte1rnpt enable flip-flop (IFF2) for storage or testing. 

When inputting a byte from an 1/0 device, IN r,(c), the flag will be adjusted to 
indicate the parity of the data. 

The Half Carry Flag (H) 

The Half Carry Flag (H) will be set or reset depending on the carry and borrow 
status between bits 3 and 4 of an 8-bit arithmetic operation. This flag is used by 

232 



the decimal adjust accumulator instruction (DAA) to correct the result of a packed 
BCD add or subtract operation. The H flag will be set ( 1) or rest (o) according to the 
following table: 

H ADD SUBTRACT 

1 There is a carry from There is no borrow from 
Bit 3 to Bit 4 Bit 4 

0 There is no carry from There is a borrow from 
Bit 3 to Bit 4 Bit 4 

The Zero Flag (Z) 

The Zero Flag (z) is set or reset if the result generated by the execution of 
certain instructions is a zero. 

For 8-bit arithmetic and logical operations, the z flag will be set to a '1' if the 
resulting byte in the Accumulator is zero. If the byte is not zero, the z flag is 
reset to 'o.' 

For compare (search) instructions, the z Hag will be set to a '1' if a comparison 
is found between the value in the Accumulator and the memory location pointed 
to by the contents of the register pair HL. 

When testing a bit in a register or memory location, the z flag will contain the 
complemented state of the indicated bit (see Bit b,s). 

When inputting or outputting a byte between a memory location and an vo 
device (INl;IND:OUTI and OUTD), if the result of B-1 is zero, the z flag is set. 
otherwise it is reset. Also for byte inputs from l/O devices using IN r.(c), the z 
Flag is set to indicate a zero byte input. 

The Sign :Flag (S) 

The Sign Flag (s) stores the state of the most significant bit of the Accumulator 
(Bit 7). When the zgo performs arithmetic operations on signed numbers, binary 
two· s complement notation is used to represent and process numeric 
information. A positive number is identified by a 'o' in bit 7. A negative number 
is identified by a '1 '. The binary equivalent of the magnitude of a positive 
number is stored in bits O to 6 for a total range of from O to 127. A negative 
number is represented by the two's complement of the equivalent positive 
number. The total range for negative numbers is from - 1 to - 128. 

When inputting a byte from a Ito device to a register, IN r, (c) the s flag will 
indicate either positive (s = o) or negative (s = 1) data. 

APPENDIX 

233 



SERIES I EDITOR/ASSEMBLER 

AppendixD 
Numeric List of Instruction Set 

Followiwr D IS a listing of object codes in numerical order m column two followed by the mnemonic or source 
statement Ill column four. 

LOC OHJ CODE STMT SOURCE STATEMENT LOC OH.J CODE STlVlT SOURCE STATEMENT 
OOiX} 00 NOP 004E 35 54 DEC(HL) 
0001 018405 

,, 
LD BCNN 004F %20 55 LD 1HL),N 

0004 02 3 LD (BC).A ()(151 37 56 SCF 
O(Xi5 OJ 4 INC BC 0052 3H2E ~7 JR C,DIS 
0006 04 5 lNC B 0054 ,N 58 ADD HL.SP 
0007 05 6 DEC B 0055 3/\8405 59 LD A,(NN) 
0008 0620 7 l.D B,N 0058 .rn 60 DEC SP 
(XlOA 07 8 RLCA 0059 ,c 61 INCA 
(KJOB 08 ') EX AF.AF' 005A 3D 62 DECA 
oooc 09 10 /\DD HL.BC 005[3 :ll'20 63 LD A.N 
orn)D 0A ll LD A,(BC) 00:\D 3F M CCF 
OUOE OB p DEC BC 005£( 40 65 LDB,H 
OOOF oc 13 JNC C 005F 41 66 LDB,C 
OOlO OD 14 DFCC (Kl6(1 

,,., 
~-.- 67 LDBJ) 

UOil OF20 l.5 LD C,N 0061 43 68 LDB,E 
(JOU OF l.6 RRCA 0062 44 69 LD B.H(NN) 
0014 l02E 17 DJNZ DIS 0063 45 70 LD B,L 
0016 I 18+05 18 LD l>E,NN 0064 46 71 LD 13,(HL) 
0019 12 19 LD (DE),A 0065 47 72 LD B.A 
Ol)IA 13 20 INC DE 0066 4g 73 LDC,B 
OOlH 14 21 INCD 0067 49 74 LDC.C 
OOIC 15 22 DEC D 0068 4A 75 LDC,D 
001!) 1620 23 LDD.N 0069 4B 76 LDC.E 
OOlF I" 24 RIA 006A 4C ",>"\' LDC.H , I , I 

0020 182E 25 JR DIS (X-)68 4D 78 LDC,L 
0022 19 26 ADD HL,DE 006C 4E 79 LD C,!HL) 
0023 l /\ 27 LD A.(DE) 006D 4F 80 LDC.A 
0024 1B 28 DEC DE 006E 50 81 LDD,B 
0025 !C 29 INCE 006F 51 82 LD D,C 
0026 [D lO DECE W70 52 83 LDD,D 
CKJ27 lE20 31 LD E,N 0071 53 84 LD D,E 
0029 IF '~ __ 1,.:., RRA ()[)'72 54 85 LDD,H 
0021\ 202E 33 JR NZ.DIS 0073 55 86 LDD,L 
002C 218405 34 LD HL,NN 0074 56 87 LD D,(HL) 
002F 228405 35 LD (NN)JlL 0075 57 88 LDD,A 
0032 23 36 !NC HL 0076 58 89 LDE.B 
0033 24 37 INCH 0077 .w 90 LD E.C 
0034 25 18 DECH 0078 SA 91 LDE.D 
0035 2620 39 LDH,N 0079 SB 92 LD E.E 
0037 27 40 DAA 007i\ 5C 9'' - ,) LDE.H 
0038 2K2E 41 JR Z,D!S 007H 51) 94 LDE,L 
00.lA 29 42 ADD HL.HL 007C 5E 95 LD E,(HL) 
003B 2A8405 4:l LDHUNN1 007D 5F 96 LD E.A 
003E 2B 44 DEC HL 007E 60 97 LDH.B 
003F 2C 45 INCL 007F 61 98 LD H,C 
0040 2D 46 DEC L 0080 62 99 LDH.l) 

0041 2E20 47 LDL,N 0081 63 JOO LDH,E 
0043 2F 48 CPL 0082 64 101 LDH.H 
0044 :l02E 49 JR NC.DJS 0083 65 102 LDH,L 
0046 318405 50 LD SP.NN 0084 66 103 LD H,(HL) 

0049 328405 51 LD iNN),A 0085 67 104 LDH,A 
004C 33 5'' INC SP 0086 68 105 LDL,B 
004!) 34 53 INC (HU 0087 69 106 LDL.C 

234 



APPENDIX 

oc OH.I CODE STMT SOURCE STATEMENT r,oc on.1 com: STMT SOl1RCE STATEMENT 
}88 6/\ 107 LDL,D ooc:5 /\7 l68 AND 1\ 
)89 ()fl 108 LDLE OOCri .'\8 16() XOR B 
18/\ 6C 1()9 U) L,H OOC7 i\9 170 XORC 
l8B (JI) l IO LD L,L OOC8 AA 171 XORD 
l8C IJf: Ill U) l.(HLi OOC9 AB 172 XORE 
)8[) 6F l 12 LDL,A OOCA AC 173 XORH 
)8E 70 113 LD IHU,B OOCB AD 174 XORL 
J8F 71 J 14 LD (1-11.LC oocc AF 17:'5 XOR 1HLl 
)90 72 115 LD (HL).D OUCD M· 176 XOR A 
)9l 73 116 LD (HL).E <X)CE BO 177 ORB 
)92 74 117 LD (HU.H OOCF Bi 178 OR C 
)93 7"- !Pl LD (HL).L OODO B:: 179 ORD 
)9-•I 76 119 HALT 00DI BJ 180 ORE 
)95 77 120 LD (HU.A 0002 B4 181 ORH 
)% 78 121 LD A,B OOD., B5 1X2 OR'<L 
)')! 79 122 LDA.C OOD4 136 183 OR(HU 
)98 7A 123 LD i\,D 00DS B7 184 ORA 
)99 78 124 LD J\.E 0OD6 B8 185 CP B 
}9A 7C 12:i LD/UI OOD7 B') 186 CPC 
)9B 7D t26 LD A.L OOD8 B,\ 187 CPD 
)9(' 7E 127 LD A,(HLJ 00D9 BB 188 CP E 
191) 7F 1.28 LD A,A OOD !\. BC [89 CPH 
NE 80 129 ADD AJl OODB BD 190 CPL 
}l/F 81 130 ADD A,C oonc BE 191 CP(HI.J 
)AO 82 131 ADDA,D OODD BF 192 CPA 
IA1 83 132 ADD A,E OODE co 19J RETNZ 
)A2 84 t:B ADDA,H Ctt\DF Cl 194 POP BC 
),\3 85 134 ADD A.L OOEO C28-+05 195 JP NZ. NN 
)A4 86 us ADD A.(IIL.) OOE3 CJ840'i 196 JP NN 
)i\5 87 136 ADD A,A OOE6 C:48405 197 CALL NZ.NN 
IA6 88 U7 ADC A.B 00E9 cs 198 Pt:SH BC 
)A7 89 138 ADC A,C 00EA C620 199 ADD A.N 
.IA8 8A U9 ADC A.D OOEC C7 200 RSTO 
iA9 8B 140 ADC A.E 00ED C8 201 RETZ 
)AA 8C 141 /\DC A.H 00EE C9 102 RET 
JAB 8D J42 ADC A,L OOEF CA8405 203 JP Z.NN 
IAC 8E 14.1 ADC A.(HL1 OOF2 CC8405 204 CALLZ,NN 
IAD 8F 144 ADC A.A 00F5 CD8405 205 CALLNN 
JAE 90 145 SUB B 00F~ CE20 206 ADC A .. N 
iAF 91 146 SUB C OOFA CF 207 RST 8 
!BO 92 147 SUB D OOFB DO 208 RET NC 
1B1 93 148 SCB E 00FC DI 209 POP DE 
182 94 149 Sl/B H 00FD D28405 210 JP NC,NN 
IB3 95 I 50 SL!B L 0100 D320 2 ll OUT.NA 
184 96 151 SUB (HL) 0J02 D48405 212 CALL NC,NN 
l!l5 97 152 SUB A 0105 DS 2 l3 PCSH DE 
l!l6 98 153 SBC A,B 0106 D620 214 SL:B N 
187 99 154 SBC A.C 0!08 D7 215 RST JOH 
1B8 9A 155 SBC A,D 0109 D8 216 RETC 
189 9B 156 SBC A,E (JI0A D9 217 EXX 
1BA 9C 157 SBC A.H (HOB DA8405 218 JPC.NN 
1BB 91) 158 SBC A,L O!OE DB20 219 IN A,N 
iBC 'IE 159 SBC A.(HL} OJ JO DC8405 220 CALLC,NN 
BD 9F 160 SBC A.A Ol lJ DE20 221 SBC A,N 
BE AO 161 ANDB 0l 15 DF 222 RST 18H 
BF Al 162 ANDC OJ 16 E0 223 RETPO 
co A2 163 ANDD 0117 El 224 POPHL 
Cl A3 164 -ANOE 0118 E28405 225 JP PO,NN 
C2 A4 16:i ANDH 011B E3 226 EX (SPI.HL 
C3 AS 166 ANDL 0llC E48405 227 CALLPO.NN 
IC4 A6 167 AND IH1.) 0llF £5 228 PUSH HL 

235 



SERIES I EDITOR/ASSEMBLER 

LOC OB.I CODE STMT SOVRCE STATEMENT LOC on.1 CODE STMT SOURCE STATE.M.ENT 
0120 E620 229 ANDN 0192 CB25 290 SLA L 
0121 E7 2.30 RST 20H 0194 CB16 291 SU\ (HL) 
0123 Ell 231 RET PE 0196 CB27 292 SLA A 
0124 E9 232 JPtHL) 0198 CH2X 29., SRAB 
0125 EA8405 2J3 JP PE,NN Ol9A CH29 2'J4 SRA C 
0128 EB 234 EX DE.HL 0l9C CB2A 295 SRA D 
0129 EC8405 235 CALLPE.NN 019E CB2H 296 SRA E 
Ol2C EE20 236 XOR N (l!AO CB2C 297 SRA H 
012E EF 237 RST 2811 0IA2 CB2D 298 SRA L 
012F FO 238 RETP O!A4 CB2E 299 SRA (HL) 
0130 Fl 239 POP AF OlA6 CB2F 300 SRA A 
OU! F28405 240 JP P,NN Olc\8 CB38 .101 SRLB 
0134 F3 241 DI OIAA CB39 )02 SRLC 
OIJ'i F48405 242 CALL P,NN OJA(' CB31\ .l03 SRL D 
0138 F5 243 PUSH AF 0lAE CB:IB 304 SRLE 
OB9 F620 244 ORN 0IB0 CB3C 305 SRL H 
013B F7 245 RST 30H 0IB2 CH3D 306 SRLL 
013C F8 :w, RETM 0184 CB3E 307 SRL (HL) 
013D F9 247 LD SP.I-IL (JJB6 CIUF 308 SRLA 
013E FA8405 24~ JP M,NN 0lB8 CB40 309 BIT O,B 
0141 FB 249 El OlBA CB41 310 BJT 0,C 
0142 FC8405 250 CALL M.NN OIBC CB42 311 Brr O,D 
0145 FE20 25l CPN OIBE CB43 m BIT 11.E 
0147 IT 2)2 RST 38H OICO CB44 313 BIT O,H 
0148 CHOO 253 RLC B OlC2 CB-Vi 314 BITO.L 
014A CBOJ 254 RLCC O!C4 CB46 315 BIT 0,(HL) 
014C CB02 255 RLCD OIC6 C!H? 316 BIT O,A 
014E CBOJ 256 RLCE OlC8 CB48 317 BIT l.B 
0150 CB04 257 RLC H OlCA CB49 3 \8 BIT l,C 
0152 CB05 258 RLC L 01cc CB4A 319 BIT l.D 
0154 CB06 259 RLC (HL) O!CE CB4B 320 BIT l.E 
0156 CB07 260 RLC A (HOO CB4C 321 BIT I.H 
0158 CB08 261 RRCB 01D2 CB..iD 322 BIT l,L 
015A CB09 262 RRCC 01D4 CB4E 323 BIT l .lHL) 
0l5C CBOA 263 RRCD OlD6 CB4f 324 BIT l,A 
OISE CBOB 264 RR.CE 0lD8 CB50 325 BIT 2,B 
0160 CBOC 265 RRCH O!DA CB51 326 BIT 2,C 
0162 CBOD 266 RRCL 0lDC CB52 327 BIT 2.D 
0164 CBOE 267 RRC /HL) (JlDE CH53 328 BIT 2.E 
0166 CBOF 268 RRC A OlEO CB5..i 329 BIT2,H 
0168 CBlO 269 RLB 0IE2 CB55 330 B!T2,L 
016A CBll 270 RLC 0IE4 CB56 33 l BIT 2.(HL) 
016C CB12 271 RLD (JlE(:, CB57 332 BIT 2,A 
016E CB13 ,~o 

~1" RL E OIE8 CB58 333 BIT3.B 
0170 ('814 273 RLH OlEA CB59 334 BIT 3,C 
0172 CBI:\ 274 RLL OIEC CB5A 335 BIT 3.D 
0174 CBl6 275 RL(HL) OlEE CBSB 336 BIT 3,E 
0176 CBl7 276 RLA 0!F0 CBSC 337 BIT 3,H 
0178 CB18 277 RR B 0!F2 CBSD 338 BIT 3.L 
017A CBI9 278 RRC OIF4 CB5E 339 BIT 3,(HL) 
017C CBlA 279 RR D OIF6 CB5F 340 BIT 3.A 
017E CBIB 280 RR E 01F8 CB60 341 BIT 4.B 
0180 CHIC 281 RR H OlFA CB6l 342 BIT 4.C 
0182 CBlD 282 RR L OIFC CB62 343 BIT 4,D 
0184 CBIE 283 RR(HL) OIFE CB63 344 B!T 4,E 
0186 CBIF 284 RR.A 02(Xl CB64 345 BIT 4,H 
0188 CB20 285 SL.AB 0202 CBo5 346 BIT 4,L 
018A CB21 286 SLAC 0204 CB66 347 BIT 4,(HU 
018C CB22 287 SLAD 0206 CB67 348 BIT 4.A 
018E CB23 288 SLA E 0208 CB68 349 BIT 5,B 
0190 C:B24 289 SLAH 020A CB69 350 BIT 5,C 

236 



APPENDIX 

oc OB.I CODE STMT SOURCE STATEMENT LOC on.1 CODE STMT SOURCE STATEMENT 
!OC CB6A 351 BIT 5,D 0286 CBA7 412 RES 4,A 
WE CB6EI .:152 BIT 5.E 0288 CBA8 413 RES 5,B 
110 CB6C 3'>3 BIT 5,ll 028A CBA9 414 RES 5.C 
!12 CB6D 354 BIT 5,L 028C CBAA 415 RES 5.D 
114 CB6E 355 BIT 5,(HL) 028E CBAB 416 RES 5,E 
w, CB61' 356 BIT 5,A 0290 CBAC 417 RES 5,H 
218 CB70 357 BIT 6,B 0292 CBAD 418 RES S,L 
11A CB7I 358 HIT6,C 0294 CBAE 419 RES 5,(HL) 
?JC CB72 359 BIT6.D 0296 CBAF 420 RES 5.A 
!lE CB73 360 IllT 6,F 0298 CBBO 421 RES 6,B 
120 CB74 }61 BlT 6,H 029A CBBl 422 RES 6,C 
~22 CJ375 362 BlT 6,L 029C CBB2 423 RES 6.D 
124 CB76 363 RJT 6,(HL) 029E CBB3 424 RES 6,E 
226 CB77 364 BIT6,A 02AO CBB4 425 RES 6,H 
228 CB78 365 BIT 7,B 02A2 CBB5 426 RES 6,L 
i2A CB79 366 BIT 7,C 02A4 CBB6 427 RES 6,(HL) 
22C CB7A 367 BIT 7,D 02A6 CBB7 428 RES 6,A 
22E CB7l3 368 BIT 7.E 02A8 CBB8 429 RES 7,B 
DO CB7C 369 BIT 7,H 02AA CBB9 430 RES 7,C 
232 CB7D 370 BIT 7,L 02AC CBBA 43! RES 7,D 
234 CB7E 371 BIT 7,(HL) 02AE CBBB 432 RES 7.E 
2:16 CB7F 372 BJT 7 .A 0280 CBBC 433 RES 7,H 
2.18 CB80 373 RES O.B 0282 CBBD 434 RES 7,L 
23A CB81 374 RES O.C 0284 CBBE 435 RES 7,(HL) 
BC C:B82 375 RES OJ) 0286 CBBF 436 RES 7,A 
23E CB8:, 376 RES O,E 0288 CBCO 437 SETO.B 
240 CB84 377 RES O,H 028A CBCl 438 SETO.C 
242 CB85 378 RES O,L 02BC CBC2 439 SETO.D 
244 CB86 379 RES 0,/HL) 02BE CBC3 440 SET O,E 
246 CB87 380 RES O,A 02CO CBC:4 44[ SETO,H 
248 CB88 381 RES l.,B 02C2 CBC5 442 SETO,L 
24A CB89 382 RES 1,C 02C4 CBC6 443 SETO,(HL) 
24C CB8A 383 RES 1.D 02C6 CBC:7 444 SETO,A 
24E CB8B 384 RES 1,E 02C8 CBC8 445 SET I.B 
250 CB8C 385 RES l.H 02CA CBC9 446 SET l.C 
252 CB8D 386 RES I,L 02cc CBCA 447 SET l,D 
254 CBSE 387 RES l,(HL) 02CE CBCB 448 SET l,E 
256 CB8F 388 RES I.A 02D0 CBCC 449 SET l.H 
258 CB90 389 RES 2,B 01D2 CBCD 450 SET l,L 
25A CB91 390 RES 2,C 02D4 CBCE 451 SET 1,/HL) 
25C CB92 391 RES 2,D 02D6 CBCF 452 SET l,A 
25E CB93 392 RES 2,E 0208 CBDO 453 SET 2,B 
260 C:B94 393 RES 2,H 02DA CBDJ 454 SET 2,C 
262 CB95 394 RES 2,L 02DC CBD2 455 SET2,D 
264 CB96 395 RES 2,(HLJ 02DE CBD3 456 SET 2.E 
266 CB97 396 RES 2,A 02EO CBD4 457 SET2,H 
268 CB98 397 RES 3,B 02E2 CBDS 458 SET 2.L 
26A CB99 398 RES 3,C 02E4 CBD6 459 SET 2,(HL) 
26C CB9A 399 RES 3,D 02E6 CBD7 460 SET 2,A 
26E CB9B 400 RES 3,E 02E8 CBD8 461 SET 3,B 
270 CB9C 401 RES 3,H 02EA CBD9 462 SET 3,C 
272 CB9D 402 RES 3,L 02EC CBDA 463 SET 3,D 
274 CB9E 403 RES 3,(HL) 02EE CBDB 464 SET 3.E 
276 CB9F 404 RES 3,A 02FO CBDC 465 SET 3,H 
278 CBAO 405 RES 4,B 02F2 CBDD 466 SET 3,L 
27A CBAl 406 RES 4,C 02F4 CBDE 467 SET 3,(HL) 

27C CBA2 407 RES 4,D 02F6 CBDF 468 SET 3,A 
27E CBA3 408 RES 4,E 02F8 CBEO 469 SET4.B 
280 CBA4 409 RES 4,H 02FA CBEl 470 SET 4,C 
282 CBAS 4!0 RES 4,L 02FC CBE2 471 SET 4,D 
284 CBA6 411 RES 4,(HL) 02FE CBE3 472 SET 4,E 

237 



SERIES I EDITOR/ASSEMBLER 

LOC OllJC:OllE STMT SOlJRCE STATEMENT LOC Oll,J CODE STI\IT SOURCE STATEMI':NT 
()\(\0 CBE4 ,'.f,73 SET 4,H o:N'J DDBE05 534 CP (IX+ IND! 
om.: CBES 474 SET ,1.L 039C DDEl 535 POP!X 
0304 CBE6 475 SFT 4,(l-lL) 1.H9E DDE3 'i36 EX (SP),IX 
0306 CBE7 476 SET 4,A UlAO DDES 537 PUSH IX 
0308 CBE8 477 SET 5,B 0lA2 DDF9 538 JP !IX) 
030!\ CBE9 478 SET 5.C i}lA4 DDF9 5_,9 LD SP.IX 
030C CBEA 479 SET 5.D 03..\() DDCB0.506 540 RLC OX+lNDl 
030E CREB 4l'l() SET 5.E 03.\A DDCB050F 541 RRC (IX+ IND) 
cn10 CBFC ,481 SET 5.H 031\E DDCB0516 .542 RL ilX + IN!)J 
0312 CHE!) 482 SET 5.L 03B2 DDCB0~ I E 5'13 RR (lX+fND1 
0314 CBLF .:ig_·~ SET 5JHL; 03B6 DDCll05?6 544 SLA (IX+ J;-,fD) 
OJ16 CHEF 484 SET 5.A (;3BA DDCB052E 54:i SRA 1lX+lND1 
0.31R CBHl l85 SET 6.B 03BE DDCB053E 546 SRL (!X + IND) 
03lA CBFJ 486 SET 6.C (l:1C2 DDCB0546 547 BIT 0,(JX + INDJ 
\\:i!C CBF2 4lfl Sl:T 6.[) 03C6 DDCB0.'i4E '.i48 BIT l.(JX + IND\ 
O:'.IE CBF, ,i)<8 SET 6.E O\CA DDCB0551J 549 BIT 2./IX+IND) 
0320 CBFi 489 SET 6.H 03CE DDCB0S:iE 550 BlT 3,/lX + IND) 
0322 CBF5 490 SET o.L 03!)2 DDCB0566 551 BIT 4JlX + ll'iD) 
0324 CBF6 49[ SET 6,(HL) WD6 DDCB05(1E 552 BIT 5,(IX + IND) 
0316 CHF7 492 SET 6,/\ WDA DDCB0576 553 Brr 6,(IX + IND) 
UJ2R CBF8 ,{93 SET 7,B 0lDE DDCB057E 554 B!T 7 .!IX+ !ND) 
fl32A CBF9 494 SET 7.C 03F2 DDCBO'.i8!, 555 RES 0,(IX + [NDl 
!J32C CBF\ 49:', SET 7,D iHE6 DDCB058E 5S6 RES l,(IX+ll'il)) 
032E CBFB 496 SET 7.E O,E/\ DDCB0596 557 RES 2,(IX + IND) 
o:no CBFC 497 SET 7.H 03EE DDCB05'1E 558 RES 3,(IX + IND) 
0332 CBFD 498 SET 7.L 03F2 DDCB05A6 559 RES 4,1IX + IND) 
03~4 CBFE 499 SET 7,(HU 03F6 DDCB05AE 560 RES 5,(!X + INDJ 
0336 CBFF 500 SET 7.A 03FA DDCB05B6 561 RES 6.(IX + lND) 
0338 DD09 501 ADD IX,BC O:lFE DDCB05BE 562 RES 7,(IX + IND\ 
03.lA DD!9 502 ADD IX.DE 0402 DDCB05C6 563 SET 0,(IX + IND) 
(i33C D0218405 503 LD !X.NN 0406 DDCB05CE 564 SET l,ilX-t-IND) 
!B40 DD228405 504 LD INN),IX 040A DDCB05D6 565 SET 2,i!X + IND) 
0344 DD2:l 505 !NCIX 040E DDCB05DE 566 SET ,.nx + !ND) 
0346 DD29 506 ADD IXJX 0412 DDCB05E6 567 SET 4,(!X + IND) 
0348 DD2AS405 507 LD lXJNN) 0416 DDCB05EE 568 SET 5,(IX + !NTJ) 
IJ:\4C DIJ2B _,i)g DEClX 041A DDCB05F6 569 SET 6,<lX + IND, 
034E DDJ405 509 lNC (IX+ IND) fl,+11; DDCB05FE 570 SET 7 .(IX+ IND) 
fUSi 01)35115 510 DEC !IX + !NJ)) 0422 ED40 571 lN BJC) 
IJ354 DD3t{l520 511 1.D ([X+ lNDLN 042,l FD41 572 01.'T (Cl.B 
0358 DD.W 512 ADD IX.SP 0426 ED42 57:l SBC HL,BC 
ill5A DD4605 513 LD B.1!X + IND) 0428 ED438405 574 LD(NN),BC 
035D DD4E05 514 LDC.i!X+IND) 042C ED44 575 NEG 
0360 [)[)5605 515 LD D,!IX + !KD) 042E ED45 576 REIN 
0:\63 DD5Hi5 516 LD E.i!X + l'.1.'D1 0430 ED46 577 IMO 
0%6 DD6605 5!7 LD H,(IX + IND\ 043~ ED47 578 LD I.A 

0369 DD6E05 5 i8 LDL,(!X+INDJ 0434 ED48 579 IN C,(Cl 

1136C DD7005 519 LD nx +- !ND),B 0436 £D49 580 OUT(C),C 

036F DD7I05 520 LD (!X + IND),C 0438 ED4A 58 l ADC HL,BC 

0372 DD7205 .'-2 i LI) (IX+ INDU) 043A £D488405 582 LD BC,(NN) 

0375 DD7305 522 LD (IX+ IND).E 
043E ED4D 583 RETI 

ED4F LDR.A 
0378 1)[)7405 523 LD (IX+ IND).H 

ED5F LDA.R 
037B DD7505 524 LD (IX+ ll'.D),L 0440 ED50 584 IN D,(C) 
0.17E DD7705 )25 LD (IX+ lNDi.A 0442 ED5I 585 OUT(C),D 
0181 DD7EG5 526 LD A,(!X + lND) 0444 ED.52 586 SBC HL,DE 
0lM DD8605 527 ADD ,\.(IX+ IND) 0446 f::[)538405 587 LD INN).DE 
0387 DD8EO, 528 \DC A,!lX + lND) 044A ED56 588 !Ml 
1}38A DD9605 529 SUB (!X + !NDJ 044C ED57 589 LDA,1 
0380 DD9E05 530 ~BC A,(IX + INDJ 04,+E ED58 590 lNE,(C) 
0390 DDA605 531 AND (IX+ IND\ 0450 ED:'i9 591 OUT(C).E 
0393 DDAE05 532 XOR ([X + IND) 0452 ED5A 592 ADC HL.DE 
0396 DDH605 :'i33 OR (IX+ IND) 0454 ED5B8405 593 LD DE.INN) 

238 



.Of' OH.I CODE STMl 
•4.5A ED60 595 
l4SC ED6 I 596 
145E ED62 S97 
W,O ED67 598 
W12 ED68 599 
l464 EDt9 600 
l466 ED6A 60! 
l468 ED6F 602 
l46A ED72 60l 
W,C FD7 ,~405 604 
14 70 E!J7:~ (,05 
i472 ED79 W6 
147 4 Em A 60'/ 
l4 76 EIY/B8405 1,m: 
147A EDNl 609 
l4?C EDA! 6IO 
14'/E EDA2 fil i 
)480 EDA3 612 
1482 EDA8 (113 
!481i LD A9 614 
1486 EDA/\ 615 
1488 EDAB 616 
143,\ EDBO 617 
.l48C EDBi 618 
i48F EDB2 619 
!4% EDB.1 /i20 
1492 FDBS 621 
l494 EDB9 (>22 
W16 EDfl,\ li23 
1498 EDBB 624 
l49A fD09 625 
l49C FD19 626 
Jcl9E FD218405 627 
l4A2 FD128405 628 
l4A6 FD23 629 
l4AS F029 630 
l4AA FD2A8405 6.11 
14:\E FD2B 632 
l4BO F-1)3405 633 
l4B3 FD.1505 634 
l4B6 FD360520 635 
l4BA FD39 636 
l4BC FD4605 637 
l4BF FDJE05 6:18 
)4C2 FD56{)5 6.19 
14C5 FD5E05 640 
J4C8 FD1i605 641 
l4CB FD6E05 642 
l4CE FD7(Kl5 643 
J4Dl FD7105 M4 
J4D4 F1)7205 645 
14D7 FD7305 646 
l4DA H)7405 647 

SOURCE STATEMENT 
IN H,(C) 
OUT(CUr 
SBC HLJlL 
RRD 
JN L,\CI 
OUT (Ci.I. 
ADC HL,HL 
RLD 
SBC HL.SP 
I.D ,:~NJ.Sf' 
!N A,(C) 
OUT(C),A 
ADC HL,SP 
LD SP,/NN) 
LD! 
CPI 
iNI 
OUT! 
LDD 
CPD 
!ND 
OUTD 
LD!R 
C!'lR 
!~HR 
OTIR 
LDDR 
CPDR 
!NDR 
OTDR 
ADD !Y,BC 
ADDiY.DE 
LO IY,NN 
LD,NNUY 
INC !Y 
ADD !Y,IY 
LDIY,(NN) 
DEC!Y 
lNC(lY+lND) 
DEC tlY ·'· fND; 
LD (lY + IND),N 
ADD!YSP 
LD B,(!Y + !ND) 
LD C,(IY + !NDJ 
LD DilY + IND) 
LD E,(!Y + [ND) 
LD H,IIY + !NDl 
LO L,(JY + IND) 
LD 1!Y + !ND),B 
LD (IY + INDJ C 
LDl!Y + lND),T) 
LD (!Y + lNDJ,E 
LD i!Y • !NDLH 

LOC OBJ CODE STMT 
04DD FD7505 64S 
0-Hifl 
041:\ 
041'6 
04E<l 
1}\EC 
(~tEF 
04F2 
iHl-5 
04F8 
04FR 
U4FE 
0500 
05i}2 
05(14 
O:i06 
0508 
osoc 
0510 
0514 
o:m 
051(' 
0520 
0524 
0528 
0~2C 
05}0 
0534 
(15}8 

053C 
054() 
0544 
0548 
054C 
0550 
0554 
0558 
055C 
(i'i/J() 

0564 
0568 
056C 
0570 
0574 
0578 
057C 
0580 
0584 

Fl)7705 
FD7E05 
FD860:i 
f'D8E0.'i 
FIJ9f~J5 
FD9E05 
FDA60:i 
FDAE0.5 
FDB605 
fDBE05 
FDEl 
FDE3 
FDE5 
FDF9 
FDF9 
.rnCB0506 
FDCB050E 
FDCBO~l6 
FDCB05iE 
FDCB0526 
l-DCBO:'i2E 
FDCBOS:lE 
FDCHOS46 
FDCB054E 
FDCll0556 
FDCB055E 
fl)Cl30566 
FDCBG56E 
FDCB0576 
FDCB057E 
FDCBU586 
FDCBU:i8E 
FDCR0596 
FDCB059E 
FDCB05A6 
FDCD05AE 
FDCB05B6 
FDCB05BE 
FDCB05C6 
FDCB05CE 
FDCB05D6 
FDCB05DE 
FDCB05E6 
FDCBOSEE 
FDCB05F6 
FDCBOSFE 

649 
1,.,0 

65 I 
652 
!l53 
654 
'155 
656 
657 
(1W 

6S9 
660 
661 
662 
66] 
664 
665 
(,(:,(j 

t,67 
668 
669 
670 
67! 
672 
67.i 
674 
r,75 
676 
t,77 
678 
679 
680 
681 
682 
683 
684 
685 
6R6 
687 
688 
689 
690 
691 
692 
693 
694 
695 NN 
696 !ND 
697 M 
698 N 
699DfS 
700 

APPENDIX 

SOURCE STATEMENT 
LD (!Y fNDJ L 
U) (lY + IND;./\ 
LD A,l,IY + JND) 
ADD A.(lY + JND) 
ArX'. A,,lY + !ND) 
SU!HIY + lNDl 
SBC A,1IY + fNDy 
.\\JD (!Y + IND) 
XOR l}Y + fNDI 
OR (]Y + !ND) 
CP (]Y -t 1:'iD) 
POP [Y 
EX (SPUY 
PUSHJY 
JPi!Yl 
LD Sl'.IY 
RLC UY+lND) 
RRC (!Y +!ND) 
Rl {IY + lNDJ 
RR (iY + !ND) 
SL\ C!Y + !ND) 
SRA (lY + IND) 
SRL i.lY + JND) 
BIT O,(IY + !ND) 
BIT I .!IY + !ND\ 
BIT 2,(!Y + JND\ 
BIT 3,(IY + !ND) 
Brr 4,0Y + !ND) 
BIT 5,(IY + IND) 
BIT 6,(JY + !ND) 
BIT 7,!!Y + fND/ 
RES OJ!Y + IND) 
RES l ,([Y + fND1 
RES 2,([Y + IND\ 
RES 3,!lY + lNDi 
RES 4,(!Y + [ND) 
RES 5,(!Y + !ND) 
RES 6,(IY + IND) 
RES 7,/!Y + !Nm 
SET O,(!Y + IND) 
SET J ,([Y + !ND) 
SET 2,(lY + lND) 
SET 3,1JY + !NDl 
SET 4,(!Y + INDJ 
SET 5,(lY + L\iDJ 
SET 6,(lY + IND) 
SET 7,0Y + IND) 
DEFS 2 
EQU 5 
EQU JOH 
EQU 20H 
EQU JOH 
END 

239 



SERIES I EDITOR/ASSEMBLER 

Appendix E/ Alphabetic List of Instruction Set 
Following is an alphabetical listing of the nmemonic or source statement in column four. The object code is 
shown in column two. 

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT 
0000 SE 1 ADC A,(HL) 005C CB42 56 BIT O,D 
0001 DD8E05 2 ADC A,(IX+IND) 005E CB43 57 BIT O,E 
0004 FD8E05 3 ADC A,(IY+IND) 0060 CB44 58 BIT 0,H 
0007 SF 4 ADC A,A 0062 CB45 59 BIT O,L 
0008 88 5 ADC A,B 0064 CB4E 60 BIT 1,(HL) 
0009 89 6 ADC A,C 0066 DDCB054E 61 BIT 1,(IX+IND) 
OOOA 8A 7 ADC A,D 006A FDCB054E 62 BIT 1,(IY+IND) 
OOOB SB 8 ADC A,E 006E CB4F 63 BIT l,A 
oooc SC 9 ADC A,H 0070 CB48 64 BIT l,B 
OOOD SD 10 ADC A,L 0072 CB49 65 BIT 1,C 
OOOE CE20 11 ADC A,N 0074 CB4A 66 BIT l.D 
0010 ED4A 12 ADC HL,BC 0076 CB4B 67 BIT 1,E 
0012 ED5A 13 ADC HL,DE 0078 CB4C 68 BIT l,H 
0014 ED6A 14 ADC HL,HL 007A CB4D 69 BIT l,L 
0016 ED7A 15 ADC HL,SP 007C CB56 70 BIT 2,(HL) 
0018 86 16 ADD A,(HL) 007E DDCB0556 71 BIT 2,(IX+IND) 
0019 DD8605 17 ADD A,(IX+IND) 0082 FDCB0556 72 BIT 2,(IY+IND) 
OOlC FD8605 18 ADD A,(IY+IND) 0086 CB57 73 BIT 2,A 
OOIF 87 19 ADD A,A 0088 CB50 74 BIT 2,B 
0020 80 20 ADD A,B 008A CB51 75 BIT 2,C 
0021 81 21 ADD A,C 008C CB52 76 BIT 2,D 
0022 82 22 ADD A,D 008E CB53 77 BIT 2,E 
0023 83 23 ADD A,E 0090 CB54 78 BIT 2,H 
0024 84 24 ADD A,H 0092 CB55 79 BIT 2,L 
0025 85 25 ADD A,L 0094 CB5E 80 BIT 3,(HL) 
0026 C620 26 ADD A,N 0096 DDCB055E 81 BIT 3,(IX+IND) 
0028 09 27 ADD HL,BC 009A FDCB055E 82 BIT 3,(IY+IND) 
0029 19 28 ADD HL,DE 009E CB5F 83 BIT 3,A 
002A 29 29 ADD HL,HL OOAO CB58 84 BIT 3,B 
002B 39 30 ADD HL,SP OOA2 CB59 85 BIT 3,C 
002C DD09 31 ADD IX.BC OOA4 CB5A 86 BIT 3,D 
002E DD19 32 ADD IX,DE OOA6 CB5B 87 BIT 3,E 
0030 DD29 33 ADD IX,IX OOA8 CB5C 88 BIT 3,H 
0032 DD39 34 ADD IX,SP OOAA CB5D 89 BIT 3,L 
0034 FD09 35 ADD IY,BC OOAC CB66 90 BIT 4,(HL) 
0036 FD19 36 ADD IY,DE OOAE DDCB0566 91 BIT 4,(IX+IND) 
0038 FD29 37 ADD IY,IY OOB2 FDCB0566 92 BIT 4,(IY+IND) 
003A FD39 38 ADD IY,SP OOB6 CB67 93 BIT 4,A 
003C A6 39 AND (HL) OOBS CB60 94 BIT 4,B 
003D DDA605 40 AND (IX+IND) OOBA CB61 95 BIT 4,C 
0040 FDA605 41 AND (IY+IND) OOBC CB62 96 BIT 4,D 
0043 A7 42 AND A OOBE CB63 97 BIT 4,E 
0044 AO 43 AND B ooco CB64 98 BIT 4,H 
0045 Al 44 AND C OOC2 CB65 99 BIT 4,L 
0046 A2 45 AND D OOC4 CB6E 100 BIT 5,(HL) 
0047 A3 46 AND E OOC6 DDCB056E 101 BIT 5,(IX+IND) 
0048 A4 47 AND H OOCA FDCB056E 102 BIT 5,(IY +IND) 
0049 A5 48 AND L OOCE CB6F 103 BIT 5,A 
004A E620 49 AND N 00DO CB68 104 BIT 5,B 
004C CB46 50 BIT 0,(HL) OOD2 CB69 105 BIT 5,C 
004E DDCB0546 51 BIT O,(IX+IND) 00D4 CB6A 106 BIT 5,D 
0052 FDBC0546 52 BIT 0,(IY+IND) 00D6 CB6B 107 BIT 5,E 
0056 CB47 53 BIT 0,A OOD8 CB6C 108 BIT 5,H 
0058 CB40 54 BIT O,B OODA CB6D 109 BIT 5,L 
005A CB41 55 BIT O,C OODC CB76 110 BIT 6,(HL) 

240 



APPENDIX 

,OC OBJ com-: STMT SOURCE STATEMENT LOC OU.I CODF'. STMT SOUIU:E STATEMENT 
ODE DDCBO:i76 Ill BlT 6,([X + lNDJ 01 :i 7 .rn j77 DEC SI' 
t)L: FDCB0576 m rm 6,(!Y ·I IND) (Jl5~ F'.i i 73 Dl 
1)E6 CB77 ID BIT 6.A (lj~() l02F 174 DJ"iZ DJS 
OE8 CH70 l 14 BlT 6.B Ol~B Fil n Fl 
OE/\ om 115 Bl1 6.C OJSC El i 76 EX 1Sf'J,HL 
IJEC crm I Ill BlT ri.D 015D DDE3 177 EX (SPJ,IX 
OH. CB7.l l 17 BIT 6,E 0151' FDE3 in EY 1SPJJY 
fJHI CH74 l 18 BlT 6Jl 1.1161 08 179 EX AF,,\F' 
:1F2 CJ375 l J') !HT (),!. ()162 EB 18/J EX DE.HL 
llf4 CB7E 120 BIT 7 .1HI.J 011,J l)() 181 EXX 
[if'(, DDCB057E 121 BIT 7,(IX + fNDJ 0164 76 18:' HAU 
:IFA FDCB057E p·, Brr 7,(IY + !NDl 0165 ED-16 J 83 J!vl 0 
)FE CB7F m BIT 7.A 0167 ED56 184 IM 
100 CB78 )24 BIT 7_13 0169 ED5F 185 iM 2 
102 ("fl?') 1.25 arr 7,C 01()!3 E!J7B 180 lN A,ICl 
!04 CB7A 126 !JJT 7.D 0161) DB20 1~7 !N A,N 
)II(, CH7B 127 BIT 7,F: lii6F )J)40 )88 IN B.iCi 
J(IS one 128 BIT 7Jl OPl ED48 189 lN C.(CI 
IOA CB7D 129 BIT 7J 111'73 ED50 ]9() IN D,IC) 
lOC DC8405 IJ(I CALL CS"i (ll 75 ED58 ]91 ])'.; E.1C1 
IOF FC8405 ]3 l CALL M.NN 0177 ED/,() 192 IN H.(Ci 
112 D48405 1:12 CALL NC,NN 0179 ED68 193 JN L,(C) 
l l5 C:D8405 rn CALL NN OJ7B 34 l4J lNC !HL) 
l Iii C4M05 134 CALL NZ,NN nm:: 1)!)1405 195 JNC nx+IND) 
1 lB F48405 m CALL P.NN lll7F FD3405 ]96 INC 1.!Y + IND) 
!IE EC8405 136 CALL PE.NN 0182 3C ]97 INC A 
J2l E48405 137 CALL PO,NN OJ 83 04 198 !NC B 
1.:4 CC8405 138 CALL Z.NN 0184 m 199 INC BC 
127 3F 139 CCF Oi85 oc 2110 INC C 
128 BE 140 Cl' (HL) 0!86 14 201 INC I) 

129 DDBE05 141 CP (]X+ll\'D) 0187 n 202 [NC DE 
IX FDBE05 142 Cl' i[Y +lND) 01~8 lC 201 INC E 
12F BF 143 CP A 0189 24 204 INC H 
130 BH 144 CP B 1118A LI 205 lNC HL 
131 ]3() 145 CP C 018B Dim 206 INC IX 
rn BA 1,,6 CP D 018D FD23 207 !NC IY 
133 BB 147 CP E Ol8F 2C wx INC L 
!34 BC ]48 CP H 0190 33 209 INC SP 
J:i5 BD 149 CP L 0191 EDAA 210 IND 
136 FEZO 150 CP N 0193 EDB,c\ 21 l JNDR 
l3R EDA9 15) CPD 0195 EDA2 212 !NI 
13A EDf-l'l 152 CPDR 0197 EDB2 213 INIR 
t}C EDA! 153 CPI 0199 E9 214 JP 1HLl 
l3E EDB! 154 CPIR 019A DDE9 215 JP OX) 
140 2F 155 CPL OJ9C FDE9 216 JP (]Y) 
141 17 156 DAA 019E DA8405 217 JP C,NN 
142 35 157 DEC (HL) OJAI FA8405 2IS JP M,NN 
143 DD3505 158 DEC ([X-1 fNDi OIA4 D28405 219 JP NC.NN 
146 FD3505 159 DEC (lY+IND) OIA7 08405 220 JP NN 
149 .iD 160 DEC A OIAA C:28405 221 JP NZ,NN 
14A 05 lo! DEC B OIAD 1'28405 222 JP P,NN 
1413 OB 162 DEC BC OlBO EA8405 m JP PE.NN 
14C OD 163 DEC C 0!81 E28405 224 JP PO.NN 
I.JD 15 164 DEC D OIB6 CA8405 225 JP Z.NN 
14E 1B 165 DEC DE OJB9 382E 226 JR C.DlS 
14F ID 166 DEC E OlBB l82E 227 JR DIS 
150 25 167 DEC H OlBD 302£ 228 JR NC.DIS 
151 2B 168 DEC HL OIBF 202E 229 JR NZ.DIS 
i52 DD2B 169 DEC IX O!Cl 282E 230 JR Z,D!S 
:54 FD2B 170 DEC IY OIC3 02 231 LD IBC),A 
.56 2D 171 DEC L OlC4 12 m LD (DE),A 

241 



SERIES I EDITOR/ASSEMBLER 

l,OC 
C;IC5 
O!C6 
OIC7 
O!C~ 
OIC9 
OICA 
OICH 
01cc 
OICE 
Ol Dl 
OlD4 
01D7 
O!Oi\ 
O!DD 
,)lEO 
UIE3 
l)IF7 
!liE!\ 
OIFD 
fliFO 
1llF:\ 
OIF6 
OIF9 
OlFC 
02(HJ 
0201 
0207 
o:on 
020F 
1]202 
02](, 
021A 
02lB 
0~ l C 
021D 
ono 
022.3 
!1226 
1)227 

0228 
0229 
022A 
022B 
022( 
022E 
022r-
02.1l 
(J'.'32 
i/235 
0238 
0239 
023A 
023B 
rmc 
023D 
021E 
02:w 
0241 
0245 
0248 
0149 

242 

OHJ ronE 
n 
10 
7i 
72 

3620 
[)l) )7(15 
1)!)700~ 

DDJI05 
!.JD'/205 
DD7 ln5 
DD74fl5 
DD750S 
!)1)16(1520 
H.17705 
HP005 
FD7l05 
FD7205 
FD7.105 
FD74•J'i 
Frmns 
H)360520 
)2840) 
ED438405 
EJJ53840'i 
nx405 
DD228405 
FD2:!8405 
FD7384G5 
OA 
IA 
7E 
DD7EfJ'.i 
FD7E05 
.1Ali4U5 
7F 
71', 

79 
7A 
711 
7C 
ED:i7 
71) 

.\L20 
46 
DD4605 
FD4605 
47 
4!J 
41 
42 
43 
44 
45 
0620 
ED4B~405 
018405 
4E 
DD4E05 

STMT 
-z·~> 
2:14 
23~ 
2".~6 
237 

)YI 

}411 
w 
24'2 
24.l 
244 
245 
246 
247 
248 
24/J 
250 
rn 
252 
253 
i54 
2:i5 
1S6 
257 
25~ 
259 
260 
26\ 
262 
263 
2M 
265 
266 
267 
268 
261) 

170 
271 
272 
273 
274 
275 
276 
277 
278 
179 
nn 
281 
282 
283 
284 
285 
286 
287 
288 
289 
1'Xi 
2'Jl 
292 
293 

SOURCE STATEMENT 
LD (HLJ,/\ 
U) !HUJl 
LD 11-ILLC 
Ll) (!H.l,D 
UJ (!!L)J, 
LD (HL),l! 
LD iHLI.L 
U) 1Hl.),N 
LD \IX+ iND_1A 
LD ilX + !I\DLB 
LD (IX -1 l~,;J)i,C 
LD nx + lNllJ,.D 
LD OX I JND),E 
LD /lX JND),ll 
LD OX+ iND),L 
U) (IX ' INDJ.N 
LD (!Y lNDl.A 
LD (lY i IND),B 
Lil t_!Y I )ND),C 
LD (IY + lND1.D 
LD UY + lNDJ,E 
LD !fY + IND"i,H 
LD ili' + ,ND1,L 
LD UY+ lND;J-.; 
LD INN),A 
LD 1NN),B( 
U) (NN),DE 
LD (NN),HL 
LD 1NNJ,IX 
LD 1NN1,!Y 
LD (NNJ,SP 
LD i\,iBCJ 
LD /\,iDE1 
LD A,(HLl 
LD 1\,(]X + lND1 
LD AJ!Y + IND) 
LD .-\,(NN1 
LD A,A 
LD A.B 
LD A.C 
LD A.D 
LD A.E 
iJ) /1..H 
LD i\J 
LD /U. 
LD i\,N 
LD B,(HL1 
LD B,(lX + JND) 
LD B,([Y + fND1 

LD B.A 
LD B,ll 
LD B,C 
LD B,D 
JJ) ll,E 
LD B.H 
LD B,L 
LD B .. N 
LD BC,1NN1 
LD BC.NN 
LD C.IHL) 
LD C.(IX + !ND! 

WC 
0:'AC 
024.f· 
02~0 
0251 
02:i2 

0255 
0?56 
0}58 
0259 
,\!5C 
U25F 
/1260 
0261 
()262 
0263 
0264 
0265 
()266 
0268 
026C 
02hF 
0270 
027.l 
0276 
0?77 
U,?7/: 

0279 
027A 
027B 
\ll'/C 
02'/D 
o:7F 
\1280 
02~3 
028b 
0287 
0'.:83 
0289 
028!\ 
028B 
028C 
0281) 
028F 
0292 
0295 
fl297 
029B 
029F 
02A3 
02A7 
02A8 
02AB 
02AE 
02AF 
02!30 
02Bl 
0282 
02133 
02134 

OBJ CODE 
FD4EOS 
•lF 
48 
49 
,\,\ 

:m 
-iC 
4D 
0[20 
56 
DD5605 
Fll51f)5 
)'} 

so 
)l 

)J 

5.1 
)<} 

.55 
1620 
ED5B840'i 
l !8~0'.'i 
SE 
DD'i1'05 
FD~E(J5 
5F 
53 
y; 
);\ 

5B 
'iC 
.~D 
1E20 
66 
DD66/J5 
FD660'.' 
67 
60 
61 
62 
6, 

64 
()) 

262(1 
2A~4U5 
218405 
ED47 
DD2A8405 
DD218405 
FD2.-\8405 
FD218405 
6E 
DD6E05 
FD6E/J5 
6F 
68 
69 
6!\ 

6B 
6C 
6D 

STMT 
)'):! 

295 
296 
297 
29~ 
29() 

JOO 
_,()] 

301 

324 

Jl6 
_117 
338 
339 
}40 
,,--!] 

i4:2 
343 
344 
345 
346 
347 
348 
]49 
350 
351 
352 
.153 
354 

SOURCE STATEMENT 
LD C,ilY i IND) 
UJ C,A 
LD CJ! 
LU C.C 
LD C,D 
LD CJ' 
LD CJ! 
LD C.L 
LD C,N 
LD D,(HU 
LD D,i!X + JND) 
LD D,(lY + IND\ 
LD D.A 
LD D.B 
LD D,C 
LD D,D 
LD D,E 
l.D DJl 
LD D,L 
LD D,N 
LD DE.1NN} 
LD DE.NN 
U) E,(i--!Ll 

LD E.(iX I JND; 
W E,(IY + IND1 
LD E.A 
LD E.B 
U) E.C 
LD E.D 
LD E_E 
LD E,H 
LD E,L 
Ul E,1\ 
U) HJHU 
LD H,(!X + lNDI 
LD H.U', + [NI)) 
i.D H,A 
LD H,B 
LD H.C 
LD H.D 
LD H,E 
LD lLH 
LD H.l. 
LD H,N 
LD HL,(NNJ 
LD HL.NN 
LD I.A 
U) lX,iNN) 
LD IX.NN 
LD !Y.(NN) 
LD IY.NN 
LD L.(HL) 
LD L,(IX + !ND) 
LD L(lY+lNDl 
LD L,A 
LD LB 
LD L.C 
LD LJ) 
LD LE 
LD L,H 
LD L,L 



APPENDIX 

,OC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT 
12B4 6D 354 LD L,L 0324 FDCB058E 414 RES l,(IY+IND) 
12B5 2E20 355 LD L,N 0328 CB8F 415 RES 1,A 

-
ED4F LD R,A 032A CB88 416 RES l,B 

1287 ED7B8405 356 LD SP,(NN) 032C CB89 417 RES 1,C 
12BB F9 357 LD SP,HL 032E CB8A 418 RES 1,D 
12BC DDF9 358 LD SP,IX 0330 CBSB 419 RES I,E 
12BE FDF9 359 LD SP,IY 0332 CBSC 420 RES 1,H 
,2co 318405 360 LD SP,NN 0334 CBSD 421 RES l,L 
12c3 EDAS 361 LDD 0336 CB96 422 RES 2,(HL) 
,2cs EDBS 362 LDDR 0338 DDCB0596 423 RES 2,(IX+IND) 
,2c1 EDA0 363 LDI 033C FDCB0596 424 RES 2,(IY+IND) 
,2c9 EDB0 364 LDIR 0340 CB97 425 RES 2,A 
12CB ED44 365 NEG 0342 CB90 426 RES 2,B 
2CD 00 366 NOP 0344 CB91 427 RES 2,C 
2CE B6 367 OR (HL) 0346 CB92 428 RES 2,D 
2CF DDB605 368 OR (IX+IND) 0348 CB93 429 RES 2,E 
202 FDB605 369 OR (IY+IND) 034A CB94 430 RES 2,H 
2D5 B7 370 OR A 034C CB95 431 RES 2,L 
2D6 BO 371 OR B 034E CB9E 432 RES 3,(HL) 
2D7 Bl 372 OR C 0350 DDCB059E 433 RES 3,(IX+IND) 
208 B2 373 OR D 0354 FDCB059E 434 RES 3,(IY+IND) 
2D9 B3 374 OR E 0358 CB9F 435 RES 3,A 
20A B4 375 OR H 035A CB98 436 RES 3,B 
20B BS 376 OR L 035C CB99 437 RES 3,C 
2DC F620 377 OR N 035E CB9A 438 RES 3,D 
2DE ED8B 378 OTDR 0360 CB9B 439 RES 3,E 
2E0 EDB3 379 OTIR 0362 CB9C 440 RES 3,H 
2E2 ED79 380 OUT (C),A 0364 CB9D 441 RES 3,L 
2E4 ED41 381 OUT (C),B 0366 CBA6 442 RES 4,(HL) 
2E6 ED49 382 OUT (C),C 0368 DDCB05A6 443 RES 4,(IX+IND) 
2E8 EDS! 383 OUT (C),D 036C FDCB05A6 444 RES 4,(IY+IND) 
2EA ED59 384 OUT (C),E 0370 CBA7 445 RES 4,A 
2EC ED61 385 OUT (C),H 0372 CBA0 446 RES 4,B 
2EE ED69 386 OUT (C),L 0374 CBAI 447 RES 4,C 
2F0 D320 387 OUT N,A 0376 CBA2 448 RES 4,D 
2F2 EDAB 388 OUTD 0378 CBA3 449 RES 4,E 
2F4 EDA3 389 OUT! 037A CBA4 450 RES 4,H 
2F6 Fl 390 POP AF 037C CBA5 451 RES 4,L 
2F7 Cl 391 POP BC 037E CBAE 452 RES 5,(HL) 
2F8 DI 392 POP DE 0380 DDCB05AE 453 RES 5,(IX+IND) 
2F9 El 393 POP HL 0384 FDCB05AE 454 RES 5,(IY+IND) 
2FA DDEI 394 POP IX 0388 CBAF 455 RES 5,A 
2FC FDEI 395 POP IY 038A CBAS 456 RES 5,B 
2FE F5 396 PUSH AF 038C CBA9 457 RES 5,C 
2FF cs 397 PUSH BC 038E CBAA 458 RES 5,D 
300 D5 398 PUSH DE 0390 CBAB 459 RES 5,E 
301 ES 399 PUSH HL 0392 CBAC 460 RES 5,H 
302 DDE5 400 PUSH IX 0394 CBAD 461 RES 5,L 
304 FDE5 401 PUSH IY 0396 CBB6 462 RES 6,(HL) 
l06 CB86 402 RES 0,(HL) 0398 DDCB05B6 463 RES 6,(IX+IND) 
l08 DDCB0586 403 RES 0,(IX+IND) 039C FDCB05B6 464 RES 6,(IY +IND) 
lOC FDCB0586 404 RES 0,(IY+IND) 03A0 CBB7 465 RES 6,A 
l!0 CB87 405 RES 0,A 03A2 CBB0 466 RES 6,B 
ll2 CBS0 406 RES 0,B 03A4 CBBI 467 RES 6,C 
!14 CBS! 407 RES 0,C 03A6 CBB2 468 RES 6,D 
116 CB82 408 RES 0,D 03A8 CBB3 469 RES 6,E 
HS CB83 409 RES 0,E 03AA CBB4 470 RES 6,H 
HA CB84 410 RES 0,H 03AC CBB5 471 RES 6,L 
HC CB85 411 RES 0,L 03AE CBBE 472 RES 7,(HL) 
HE CBSE 412 RES l,(HL) 03B0 DDCB05BE 473 RES 7,(IX+IND) 
120 DDCB058E 413 RES 1,(IX+IND) 03B4 FDCB05BE 474 RES 7,(IY+IND) 

243 



SERIES I EDITOR/ASSEMBLER 

LOC OHJ COOE SHIT SOlJRCE STATE'\1.ENT LOC OB.I CODE STMT SOURCE STATEMENT 

03BR C:BBF ,ns RES 7J\ 04.16 CBOD 5:16 RRC L 
03HA CBHX 4?6 RES 7.B ll4'.l8 ur 537 RRCA 
03BC CBB9 ,in RES .C 04:19 ED67 538 RRD 
OJBE CBBA 478 RES 7,D 043B ('7 539 RST 0 
03CO CBHB 479 RES 7,1' 04oC D7 540 RST lOll 
OJC2 CHBC 480 RES 7Jj 04}1) DF 541 RST rnH 
OJC4 CBBD 48! RES 7.L 043E F7 542 RST WH 
03('6 C9 482 RET U4~F EF :i43 RST 28H 
03C7 D8 483 RET C ()441) Fi 544 RST 3UH 
03C8 F~ 484 RET M O-l4i FF 545 RST 38H 
03C9 no 485 RET NC 0442 CF 546 RST 08H 
o:JCA co 486 RET NZ 0443 9E '\47 SBC A,1111./ 
03CB H) 487 RET p 0414 DD9E05 548 SBC A,(!X + !NDJ 
03CC E8 48:'; RFT PF 0447 f'!)l)tl)~ 5,i9 SBC A.(IY +IND) 
03('1) EO 489 RET PO 044/\ 9F 55() SBC A.A 
03CE Ol 490 RFT z 044B 9~ 551 SBC A.B 
03CF ED4D 491 RETI 044C 99 552 SBC A.C 
OJDJ ED45 492 RETN 044D 'if\ 55:l SBC A,D 
03Dl CBl6 493 RL (HU (141E 9B 554 SBC A,E 
03D5 DDCB0516 494 RL (IX·, IND! 044F 9C 5S5 SBC A,H 
03D'1 fl)(Jl0516 495 RL i!Y i IND) 0450 <)]) 556 SBC \,L 
OJDD CBl7 496 RL A 0451 DE20 557 SBC /L'-' 
03DF CHIU 497 RL B 0453 ED42 558 SBC HL,BC 
0.1El CB1l 49X RL C 0455 EIJ52 559 SBC HL,DE 
03E} CB12 499 RL D 0457 ED62 560 SBC HL,HL 
mr:s ('813 5(1() RL E 0459 Efl72 56] SBC HL.SP 
03E7 Clll4 501 RL H 0458 37 562 SCf 
03E9 CBl5 502 RL L f145C CBC6 563 SET O.IHLI 
03EB ]7 503 RLA 045E DDCB05C6 564 SET O,(IX + IND., 
03EC CBOti 504 RLC !HL) 0462 FDCB05C6 :i65 SET 0,(IY + 1:-.;D) 
11.lEE DDCB050b 505 RLC ifX + !ND1 0466 CBC7 566 SET O.A 
OW2 FDCB0506 506 RLC (lY ,L\/D1 04()8 CBCO WI SET 0.B 
OJF6 CB07 507 RLC A 046A CBCI 568 SET O.C 
OJFS moo 508 RLC B 046C CBC2 569 SET ll,D 
03FA CHIJl 509 RLC C 046E CBCJ 570 SET O.E 
03FC CB02 5 l() RLC D 047(1 CBC4 571 SET O,H 
03FE Cll03 511 RLC 1: 0471 CBC5 572 SET (l.L 
0400 CB04 512 RLC H 0474 CBCE ST\ SET 1,(HL) 
fl402 CB05 51,1 RLC L 0476 DDCB05CE 574 SET 1,(lX + IND1 
0404 07 514 RLCA 047A FDCBOSCE 575 SET l,(IY IND) 
0405 EDoF ~15 RU) 047E CBCF 576 SE1 I.A 
0407 CBJF 516 RR iHL) 0480 CBC8 577 SET l,B 
il409 DDCB051E 517 RR IIY +!ND/ 0482 CBC9 578 SET l,C 
041)!) H)Cll051E 518 RR UY +IND) 04X4 CBCA 579 SET I.D 
0411 CBIF 519 RR A 0486 CBCB 580 SET 1,E 
0413 Cf l!X 520 RR lJ 0488 CBCC 58! SET 1,H 
0415 CBl9 521 RR C 048A CBCD 582 SET l,L 
0417 CBIA 522 RR D 048C CBD6 583 SET 2.\HL) 
(,41 ') CBIB 523 RR E 048E DDCB05!)(1 5S4 SET 2.nx + rND, 
04113 CB!C 524 RR H 0492 FDCBO:iD6 585 SET 2,(!Y + !NDI 
041D CBID 525 RR L 0496 CBD7 58(1 SET 2.A 
(l41F lF 526 RRA 0498 CBDO 587 SET 2.B 
0420 CBOE 527 RRC (HU 049A CBDI 588 SET 2,C: 
0422 DDCB050E 52X RRC (IX ~1 IND) 049( C:BD2 589 SET 2,D 
0426 FDCB050E 529 RRC 1.IY + INDJ 049E CBDJ 590 SET 2,E 
042A CBOF 530 RRC A 04AO CBD4 59! SET 2,H 
042C CB08 5.11 RRC B 04A2 CBD5 542 SET 2.L 
042E CB09 5}2 RRC C 04M CBD8 593 SET .l.B 
04.1(1 CBOA 533 RRC D 04<\6 CBDE 594 SET 3.(HL) 
04:12 CBOB 534 RRC E 04A8 DDCB05DE 595 SET 3,(IX +IND) 
0434 CBOC 535 RRC H 04AC FDCB05DE 596 SET 3.(!Y +INDJ 

244 



APPENDIX 

,oc OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT 
<IB4 CBDA 599 SET 3,D 052E CB23 650 SLA E 
<IB6 CBDB 600 SET 3,E 0530 CB24 651 SLA H 
4B8 CBDC 601 SET 3,H 0532 CB25 652 SLA L 
4BA CBDD 602 SET 3,L 0534 CB2E 653 SRA (HL) 
4BC CBE6 603 SET 4,(HL) 0536 DDCB052E 654 SRA (IX+IND) 
4BE DDCB05E6 604 SET 4,(IX+IND) 053A FDCB052E 655 SRA (IY+IND) 
4C2 FDCB05E6 605 SET 4,(IY+IND) 053E CB2F 656 SRA A 
4C6 CBE7 606 SET 4,A 0540 CB28 657 SRA B 
4C8 CBEO 607 SET 4,B 0542 CB29 658 SRA C 
4CA CBEl 608 SET 4,C 0544 CB2A 659 SRA D 
4CC CBE2 609 SET 4,D 0546 CB2B 660 SRA E 
4CE CBE3 610 SET 4,E 0548 CB2C 661 SRA H 
4DO CBE4 611 SET 4,H 054A CB2D 662 SRA L 
4D2 CBE5 612 SET 4,L 054C CB3E 663 SRL (HL) 
4D4 CBEE 613 SET 5,(HL) 054E DDCB053E 664 SRL (IX+IND) 
4D6 DDCB05EE 614 SET 5,(IX+IND) 0552 FDCB053E 665 SRL (IY+IND) 
4DA FDCB05EE 615 SET 5,(IY +IND) 0556 CB3F 666 SRL A 
4DE CBEF 616 SET 5,A 0558 CB38 667 SRL B 
4EO CBE8 617 SET 5,B 055A CB39 668 SRL C 
4E2 CBE9 618 SET 5,C 055C CB3A 669 SRL D 
4E4 CBEA 619 SET 5,D 055E CB3B 670 SRL E 
4E6 CBEB 620 SET 5,E 0560 CB3C 671 SRL H 
4E8 CBEC 621 SET 5,H 0562 CB3D 672 SRL L 
4EA CBED 622 SET 5,L 0564 96 673 SUB (HL) 
4EC CBF6 623 SET 6,(HL) 0565 DD9605 674 SUB (IX+IND) 
4EE DDCB05F6 624 SET 6,(IX+IND) 0568 FD9605 675 SUB (IY+IND) 
4F2 FDCB05F6 625 SET 6,(IY +IND) 056B 97 676 SUB A 
4F6 CBF7 626 SET 6,A 056C 90 677 SUB B 
4F8 CBFO 627 SET 6,B 056D 91 678 SUB C 
4FA CBFl 628 SET 6,C 056E 92 679 SUB D 
4FC CBF2 629 SET 6,D 056F 93 680 SUB E 
4FE CBF3 630 SET 6,E 0570 94 681 SUB H 
S00 CBF4 631 SET 6,H 0571 95 682 SUB L 
S02 CBF5 632 SET 6,L 0572 D620 683 SUB N 
S04 CBFE 633 SET 7,(HL) 0574 AE 684 XOR (HL) 
S06 DDCB05FE 634 SET 7,(IX+IND) 0575 DDAE05 685 XOR (IX+IND) 
SOA FDCB05FE 635 SET 7,(IY + IND) 0578 FDAE05 686 XOR (IY+IND) 
SOE CBFF 636 SET 7,A 057B AF 687 XOR A 
510 CBFS 637 SET 7,B 057C AS 688 XOR B 
512 CF9 638 SET 7,C 057D A9 689 XOR C 
514 CBFA 639 SET 7,D 057E AA 690 XOR D 
516 CBFB 640 SET 7,E 057F AB 691 XOR E 
518 CBFC 641 SET 7,H 0580 AC 692 XOR H 
51A CBFD 642 SET 7,L 0581 AD 693 XOR L 
51C CB26 643 SLA (HL) 0582 EE20 694 XOR N 
51E DDCB0526 644 SLA (IX+IND) 0584 695NN DEFS 2 
522 FDCB0526 645 SLA (IY + IND) 696IND EQU 5 
526 CB27 646 SLA A 697M EQU lOH 
528 CB20 647 SLA B 698N EQU 20H 
i2A CB21 648 SLA C 699 DIS EQU 30H 
i2C CB22 649 SLA D 700 END 

245 



SERIES I EDITOR/ASSEMBLER 

AppendixF / Z-80 CPU Register and 
1\rchitecture 

This sec1ion gives information about the actual Z80 chip including the Central 
Processing Unit (CPU) Register configuration. 

Z-80 CPU Architecture 
A. block diagram of the internal architecture of the z-so CPU is shown in l;'igure 
2. The diagram ail of the major elements in the CPU and it should be 
referred to throughout the following description. 

CPU Registers 
z 80 CPU contains 2(18 bits of R/W memory that are accessible to the 

programmer. Figure 3 illustrates how this memory is configured into eighteen 
8-bit registers and four 16 hit All Z-80 registers are implemented using 
static RAM. The regi:stcrs include two sets of six general purpose registers that 
may be used individually as 8-bit registers or in pairs of 16-bit There 
are also two sets of accumulator and flag registers. 

Special Purpose Registers 

CPU ANO 
SYSTEM 
CONTROL 
SIGNALS 

~ REG " 
INSTRUCTION 

/,.,__··~l~NST _,A 

DECODE I 
& .___ 

CPU 
CONTROL 

CPU 
---,,./CONTROL 

r i r 
4'iVGNO•I• 

Figure 2, Z-80 CPU Block Diagram. 

246 

/' 
'1 ?asn 
I ! DATA BUS 

'(' ' 

16BIT 
ADDRESS BUS 



MAIN REG SET AL TE RN ATE REG SET 

, 
" 

ACCUMULATOR FLAGS ACCUMULATOR 
A F A' 

B C e· 

0 E o· 

H L H' 

INTERRUPT I MEMORY 
VECTOR REFRESH 
I R 

INOEX REGISTER IX 

INOEX REGISTER IV 

STACK POINTER SP 

PROGRAM COUNTER PC 

Figure 3, Z-80 CPU Register Configuration. 

FLAGS 
F' 

c· 

E' 

L' 

SPECIAL 
PURPOSE 
REGISTERS 

} 

GENERAL 
PURPOSE 
REGISTERS 

1. Program Counter (PC). The program counter holds the 16-bit address of the 
current instruction being fetched from memory. The PC is automatically 
incremented after its contents have been transferred to the address lines. 
When a program jump occurs the new value is automatically placed in the PC, 

overriding the incrementer. 

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current 
top of a stack located anywhere in external system RAM memory. The 
external stack memory is organized as a last-in first-out (LIFO) file. 

Data can be pushed onto the stack from specific CPU registers or popped off 
of the stack into specific CPU registers through the execution of PUSH and POP 

instructions. The data popped from the stack is always the last data pushed 
onto it. The stack allows simple implementation of multiple level interrupts, 
unlimited subroutine nesting and simplification of many types of data 
manipulation. 

3. 1\vo Index Register (IX & IY). The two independent index registers hold a 
16-bit base address that is used in indexed addressing modes. In this mode, 
an index register is used as a base to point to a region in memory from which 
data is to be stored or retrieved. An additional byte is included in indexed 
instructions to specify a displacement from this base. This displacement is 
specified as a two's complement signed integer. This mode of addressing 
greatly simplifies many types of programs, especially where tables of data 
are used. 

APPENDIX 

247 



SERIES I EDITOR/ASSEMBLER 

4. Interrupt Page Address Register (1). The z-so CPU can be operated in a 
mode where an indirect call to any memory location can be achieved in 
response to an interrupt. The I Register is used for this purpose to store the 
high order 8-bits of the indirect address while the interrupting device provides 
the lower 8-bits of the address. This feature allows interrupt routines to be 
dynamically located anywhere in memory with absolute minimal access time 
to the routine. 

5. Memory Refresh Register (R). The z-so CPU contains a memory refresh 
counter to enable dynamic memories to be used with the same ease as static 
memories. Seven bits of this 8 bit register are automatically incremented after 
each instruction fetch. The eighth bit will remain as programmed as the result 
of an LD R, A instruction. The data in the refresh counter is sent out on the 
lower portion of the address bus along with a refresh control signal while the 
CPU is decoding and executing the fetched instruction. This mode of refresh is 
totally transparent to the programmer and does not slow down the CPU 

operation. The programmer can load the R register for testing purposes, but 
this register is normally not used by the programmer. During refresh, the 
contents of the I register are placed on the upper 8 bits of the address bus. 

Accumulator and Flag Registers 

The CPU includes two independent 8-bit accumulators and associated 8-bit flag 
registers. The accumulator holds the results of 8-bit arithmetic or logical 
operations while the flag register indicates specific conditions for 8 or 16-bit 
operations, such as indicating whether or not the result of an operation is equal 
to zero. The programmer selects the accumulator and flag pair that he wishes to 
work with a single exchange instruction so that he may easily work with either 
pair. 

General Purpose Registers 

There are two matched sets of general purpose registers, each set containing six 
8-bit registers that may be used individually as 8-bit registers or as 16-bit 
register pairs by the programmer. One set is called BC, DE and HL while the 
complementary set is called BC; DE and HL.' At any one time the programmer 
can select either set of registers to work with through a single exchange 
command for the entire set. In systems where fast interrupt response is required, 
one set of general purpose registers and an accumulator/flag register may be 
reserved for handling this very fast routine. Only a simple exchange command 
need be executed to go between the routines. This greatly reduces interrupt 
service time by eliminating the requirement for saving and retrieving register 
contents in the external stack during interrupt or subroutine processing. These 
general purpose registers are used for a wide range of applications by the 
programmer. They also simplify programming, especially in ROM based systems 
where little external read/write memory is available. 

248 



Arithmetic & Logic Unit (ALU) 
The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. 

Internally the ALU communicates with the registers and the external data bus on 
the internal data bus. The type of functions performed by the ALU include: 

Add Left or right shifts or rotates (arithmetic and logical) 

Subtract Increment 

Logical AND Decrement 

Logical OR Set bit 

Logical Exclusive OR Reset bit 

Compare Test Bit 

Instruction Register and CPU Control 
As each instruction is fetched from memory, it is placed in the instruction 
register and decoded. The control sections performs this function and then 
generates and supplies all of the control signals necessary to read or write data 
from or to the registers, control the ALU and provide all required external control 
signals. 

Z-80 CPU Pin Description 

The z-so CPU is packaged in an industry standard 40 pin Dual In-Line Package. 
The 110 pins are shown in Figure 4 and the function of each is described below. 

~-A1s 
(Address Bus) 

M1 
(Machine Cycle 
one) 

Tri-state output, active high. A0-A15 constitute a 16-bit 
address bus. The address bus provides the address for 
memory ( up to 64 K bytes) data exchanges and for 1/0 
device data exchanges. 1/0 addressing uses the 8 lower 
address bits to allow the user to directly select up to 256 
input or 256 output ports. ~ is the least significant address 
bit. During refresh time, the lower 7 bits contain a valid 
refresh address. 

Tri-state input/output, active high. D0-D7 constitute an 
8-bit bidirectional data bus. The data bus is used for data 
exchanges with memory and 1/0 devices. 

Output, active low. M 1 indicates that the current machine 
cycle is the OP code fetch cycle of an instruction execution. 
Note that during execution of 2-byte op-codes, M 1 is 
generated as each op-code byte is fetched. These two byte 
op-codes always begin with CBH, DDH, EDH or FDH. M 1 

also occurs with IORQ to indicate an interrupt acknowledge 
cycle. 

APPENDIX 

249 



SERIES I EDITOR/ASSEMBLER 

(M 1 

I ······-·-·· 
' Mf1Hl 

SY sn M J ifiiici 
. < ---

CONTHOi. ·1 ~[) 
V,R 

CPU 
CONTROL 

I 
I. iifsH 
' 

i'iifil'r 

CPU j 8USAQ 
BUS , 
CONTROL l BUSAK 

'· 

,j, 

•5V 
GND 

27 --·-
19 

..... -~-•-•e•• 

20 

21 ----- ··----
22 

--··-
28 

------
24 

z. 80 CPU 

·~-- Ao ___:12,_, __ A1 

-~- A2 33 · 
·;;--- ~:l 

--- ~4 
~~-~---- t,5 _3~-- A6 

.. ~?~ __ _.,.. A7 

-~- Ag 

~-- A!) 

--~-- A.10 _ __1__ ____ A11 

----··-·?:-~.;r..,. A 1 ··) 
3 -

----~-~-........ 1"'13 

--~------ A 1 4 
--~ .. A15 

l 

ADDRESS 
BUS 

s DATA 

[ BUS 

) 

Figure 4, Z-80 Pin Configuration. 

MREQ 
(Memory 
Request) 

IORQ 
(Input/Output 
Request) 

RD 
(Memory Read) 

WR 
(Memory Write) 

250 

Tri-state output, active low. The memory request signal 
indicates that the address bus holds a valid address for a 
memory read or memory write operation. 

Tri-state output, active low. The IORQ signal indicates that 
the lower half of the address bus holds a valid I/0 address 
for a I/0 read or write operation. An IORQ signal is also 
generated with an M 1 signal when an interrupt is being 
acknowledged to indicate that an interrupt response vector 
can be placed on the data bus. Interrupt Acknowledge 
operations occur during M 1 time while 1/0 operations never 
occur during M1 time. 

Tri-state output, active low. RD indicates that the CPU 
wants to read data from memory or an I/0 device. The 
addressed I/0 device or memory should use this signal to 
gate data onto the CPU data bus. 

Tri-state output, active low. WR indicates that the CPU data 
bus holds valid data to be stored in the addressed memory 
or I/0 device. 



RFSH 
(Refresh) 

HALT 
(Halt state) 

WAIT 
(Wait) 

INT 
(Interrupt 
Request) 

NMI 
(Non Maskable 
Interrupt) 

RESET 

Output, active low. RFSH indicates that the lower 7 bits of 
the address bus contain a refresh address for dynamic 
memories and the current MREQ signal should be used to 
do a refresh read to all dynamic memories. 

Output, active low. HALT indicates that the CPU has 
executed a HALT software instruction and is awaiting either 
a non maskable or a maskable interrupt (with the mask 
enabled) before operation can resume. While halted, the 
CPU executes NOP's to maintain memory refresh activity. 

Input, active low. WAIT indicates to the Z-80 CPU that the 
addressed memory or 1/0 devices are not ready for a data 
transfer. The CPU continues to enter wait states for as long 
as this signal is active. This signal allows memory or 1/0 
devices of any speed to be synchronized to the CPU. 

Input, active low. The Interrupt Request signal is generated 
by 1/0 devices. A request will be honored at the end of 
the current instruction if the internal software controlled 
interrupt enable flip-flop (IFF) is enabled and if the BUSRQ 
signal is not active. When the CPU accepts the interrupt, an 
acknowledge signal (IORQ during M1 time) is sent out at 
the beginning of the next instruction cycle. 

Input, negative edge triggered. The non maskable interrupt 
request line has a higher priority than INT and is always 
recognized at the end of the current instruction, independent 
of the status of the interrupt enable flip-flop. NMI 
automatically forces the Z-80 CPU to restart to location 
00668 . The program counter is automatically saved in the 
external stack so that the user can return to the program that 
was interrupted. Note that continuous WAIT cycles can 
prevent the current instruction from ending, and that a 
BUSRQ will override a NMI. 

Input, active low. RESET forces the program counter to 
zero and initializes the CPU. The CPU initialization 
includes: 

1) Disable the interrupt enable flip-flop 
2) Set Register I = 008 

3) Set Register R = 008 

4) Set Interrupt Mode 0 

During reset time, the address bus and data bus go to a high 
impedance state and all control output signals go to the 
inactive state. 

APPENDIX 

251 



SERIES I EDITOR/ASSEMBLER 

BUSRQ 
(Bus Request) 

BUSAK 
(Bus 
Acknowledge) 

Input, active low. The bus request signal is used to request 
the CPU address bus, data bus and tri-state output control 
signals to go to a high impedance state so that other devices 
can control these buses. When BUSRQ is activated, the 
CPU will set these buses to a high impedance state as soon 
as the current CPU machine cycle is terminated. 

Output, active low. Bus acknowledge is used to indicate to 
the requesting device that the CPU address bus, data bus 
and tri-state control bus signals have been set to their high 
impedance state and the external device can now control 
these signals. 

Single phase TTL level clock which requires only a 330 
ohm pull-up resistor to + 5 volts to meet all clock 
requirements. 

Z-80 CPU Instruction Set 
The z-so CPU can execute 158 different instruction types including all 78 of the 
8080A CPU. The instructions can be broken down into the following major 
groups: 

• Load and Exchange 

• Block Transfer and Search 

• Arithmetic and Logical 

• Rotate and Shift 

• Bit Manipulation (set, reset, test) 

• Jump, Call and Return 

• InpuUOutput 

• Basic CPU Control 

252 



Subject Page 

Abbreviations . . . . . . . . . . . . . . . . . . . . . . 17 
Accumulator ...................... 248 
ADC A,S ....................... 109 
ADC HL,ss . . . . . . . . . . . . . . . . . . . . . . . 142 
Add/Subtract flag .................. 231 
ADD A,(HL) ....................... 1 07 
ADD A,(IX + d) .................... 107 
ADD A.n . . . . . . . . . . . . . . . . . . . . . . . . . 106 
ADD A.r .......................... 105 
ADD HL,ss ....................... 141 
ADD IX,pp ........................ 144 
ADD A,(IY + d) .................... 108 
ADD !Y,rr ......................... 145 
Alphabetical list of Z-80 

instructions ................. 240-245 
AND s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
Arithmetic logic unit (ALU) .......... 249 
Assembler . . . . . . . . . . . . . . . . . . . . . . . . 21 

Commands . . . . . . . . . . . . . . . . . . . . . . 21 
Definitions . . . . . . . . . . . . . . . . . . . . 25-26 
Output . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Switch ....................... 21-22 
Using the assembler .............. 21 

BIT B,(HL) .......... _ ............. 178 
BIT B,(IX + d) . . . . . . . . . . . . . . . . . . . 179 
BIT B,(IY + d) ..................... 180 
BIT b,r ........................... 177 
CALL cc,nn ....................... 202 
CALLnn .......................... 201 
Carry flag ......................... 231 
CCF ............................. 134 
Central processing unit (CPU) ....... 249 
Comments . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Computer Type . . . . . . . . . . . . . . . . . . . . . . 4 
CPD ............................. 102 
CPDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
CPI .............................. 99 
CPIR ............................. 101 
CPL ............................. 132 
CPs ............................. 122 
CPU block diagram ................ 246 
CPU -- pin description . . . . . . . . . . 249-252 
Current line . . . . . . . . . . . . . . . . . . . . . . . . . 7 

INDEX 

INDEX 

Subject Page 

DAA ............................. 131 
DECIX ........................... 149 
DEC IV . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
DECm ........................... 127 
DECss ........................... 148 
DI ................................ 136 
DJNZe ........................... 199 
Editor 

Commands ............... 8-15, 18, 19 
Definition . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Featuresof ........................ 2 
How to use .................... 2, 5, 7 

El ................................ 137 
Error messages (assembler) ....... 24-25 
Error messages (Editor) . . . . . . . . . . . . . . 16 
EXAF,AF' ......................... 87 
EXDE,HL .......................... 87 
Expressions . . . . . . . . . . . . . . . . . . . . . . . . 29 
EX (SP),HL ........................ 89 
EX(SP),IX ......................... 90 
EX(SP),IY . .. . ................... 91 
EXX ............................... 88 
File ................................ 7 
File name . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Flag register ....................... 248 
Flags (status) . . . . . . . . . . . . . . . . . . . . . . 231 
Half-Carryflag ................. 232-233 
HALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 
IMO .............................. 138 
IM1 .............................. 138 
IM2 .............................. 139 
IN A,(n) ........................... 211 
INC(HL) .......................... 125 
INCIX ............................ 146 
INC(IX+d) ....................... 125 
INC IY ........................... 147 
INC (IY +d) ....................... 126 
INC r ............................ 124 
Increment . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
INCss ........................... 146 
IND .............................. 216 
Index registers . . . . . . . . . . . . . . . . . . . . 24 7 
INDR ............................ 217 

253 



SERIES I EDITOR/ASSEMBLER 

Subject Page 

INI ............................... 213 
INIR ............................. 214 
Input/Output commands . . . . . . . . . . . . . 13 
IN r,(C) ........................... 212 
Interrupt register . . . . . . . . . . . . . . . . . . 248 
Italic type . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
JP cc,nn ......................... 190 
JP (HL) ........................... 197 
JP(IX) ........................... 198 
JP (IY) ........................... 198 
JP nn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
JR C,e . . . . . . . . . . . . . . . . . . . . . . . . 192 
JR e . . . . . . . . . . . . . . . . . . . . ....... 191 
JR NC,e . . . . . . . . . . . . ............. 193 
JR NZ,e . . . . . . . . . . . . . . . . . . . . . . . . . 195 
JR Z,e ........................... 194 
Label . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 26 
LD A,(BC) . . . . . . . . . . . . ............ 57 
LD A,(DE) .. . .. .. . . .. . .. .. . .. . ... 57 
LO A,I . . . ......................... 61 
LD A,(nn) .......................... 58 
LDA,R ........................... 62 
LD (BC),A ........................ 59 
LOO ........................... 96 
LD dd,(nn) ......................... 68 
LDdd,nn .......................... 65 
LO (DE),A . . . . . . . . . . . . . . . ......... 59 
LODR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
LO (HL),n .......................... 54 
LD HL,(nn) ......................... 67 
LD (HL),r . . . . . . . . . . . . . . . . . . . . .... 52 
LOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
LO I ,A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
LOIR .............................. 94 
LO (IX+d),n ....................... 55 
LO (IX+ d),r ........................ 52 
LO IX,nn . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
LD IX,{nn) . . . . . . . . . . .............. 69 
LD (IY + d),n ...................... 56 
LD (IV+ d),r ........................ 53 
LO IY,nn ........................... 67 
LD IY,(nn) . . . . . . . . . . . . . . . . . ....... 70 
LD (nn),A .......................... 60 
LO (nn),dd ......................... 72 
LO (nn),HL ......................... 71 

254 

Subject Page 

Lb (nn),IX ......................... 73 
LD (nn),IY . . . . . .................. 74 
LD R,A ............................ 63 
LD r,(HL) .......................... 49 
LO r,(IX+d) ....................... 49 
LD r,(IY + d) . . . . .. . . . . . . . . . . . . . ..... 51 
LD r,n ............................. 48 
LD r,r' ............................. 47 
LD SP,HL ......................... 75 
LO SP,IX ........................ 76 
LO SP,IY .......................... 77 
Memory refresh register . . . . . . . . . . . . 248 
Mnemonics . . . . . . . . . . . . . . . . . . . . . . . 26 
Model I - Subroutines ............. 228 
NEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 
NOP ............................ 135 
Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Numerical list of Z-80 instructions 234-239 
Object code . . . . . . . . . . . . . . . . . . . . . . . . 33 
Object code . . . . . . . . . . . . . . . . . . . . . . . . 4 
Object file . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Operands . . . . . . . . . . . . . ......... 26, 29 
Operations . . . . . . . . . . . . . . . . . . . . . . . 27 
OR s ............................ 117 
OTDR ............................ 224 
OTIR . . . . . . . . . . . . . . . . . . . . ........ 221 
OUT (C),r ........................ 219 
OUTD ............................ 223 
OUTI . . . .. . . . . . . . . . . . . . ........... 220 
OUT (n),A . . . . ................... 218 
Parity/Overflow flag ................ 232 
POP IX ............................. 82 
POP IY . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
POP qq . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
Program counter .................. 247 
Pseudo Operations .............. 27-28 
PUSH IX . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
PUSH IY . . . . . . . . . . . . . . . . . . . . . . . . . . 80 
PUSH qq . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
Register configuration .............. 246 
RES b,m ......................... 186 
RET ............................. 204 
RET cc ........................... 205 
RETI ... .' ......................... 207 
RETN ............................ 208 



Subject Page 
RLA ............................. 152 
RLCA ............................ 151 
RLC (HL) . . . . . . . . . . . . . . . . . . . . . . . . . 156 
RLC (IX+d) ...................... 157 
RLC (IY +d) ...................... 158 
RLC r ............................ 155 
RLD ............................. 173 
RLm ............................. 160 
RRA ............................. 154 
RRCA ............................ 153 
RRCm ........................... 162 
RRD ............................. 175 
RR m ............................ 164 
RSTp ............................ 209 
Sample Programming ............ 31-36 
SBCA,s .......................... 113 
SBC HL,ss . . . . . . . . . . . . . . . . . . . . . . . . 143 
SCF ............................. 135 
SET b,(HL) ....................... 182 
SETb,(IX+d) ..................... 183 
SET b,(IY +d) ..................... 185 
SETb,r ........................... 181 
Sign flag . . . . . . . . . . . . . . . . . . . . . . . . . . 233 
Using the TPSRC utility ............ 227 
SLAm ........................... 166 
Source Code . . . . . . . . . . . . . . . . . . . . . . . . 4 
Source File . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Special keys ..................... 8, 17 
Special Terms ....................... 4 
SRAm ........................... 169 
SRLm ........................... 171 
Stack Pointer ..................... 247 
Status flags . . . . . . . . . . . . . . . . . . . . . . . 231 
SUB s ............................ 111 
Symbols ........................... 17 
Text ................................ 7 
Text buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Text handling . . . . . . . . . . . . . . . . . . . . . . . . 7 
Text handling commands ............. 9 
Trial Assembly . . . . . . . . . . . . . . . . . . . . . 32 
XOR s ........................... 119 
Z-80 instructions ................ 37-226 
Zero flag . . . . . . . . . . . . . . . . . . . . . . . . . 233 

INDEX 

255 







IMPORT ANT NOTICE 

ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN 
"AS IS" BASIS WITHOUT WARRANTY. 

Radio Shack shall have no liability or responsibility to customer or any 
other person or entity with respect to any liability, loss or damage caused or 
alleged to be caused directly or indirectly by computer equipment or pro
grams sold by Radio Shack, including but not limited to any interruption of 
service, loss of business or anticipatory profits or consequential damages 
resulting from the use or operation of such computer or computer programs. 
NOTE: Good data processing procedure dictates that the user test the 

program., run and test sample sets of data, and run the system in 
parallel with the system previously in use for a period of time 
adequate to insure that results of operation of the computer or 
program are satisfactory. 

RADIO SHACK SOFTWARE LICENSE 

A Radio Shack grants to CUSTOMER a non-exclusive, paid up license 
to use on CUSTOMER'S computer the Radio Shack computer software 
received. Title to the media on which the software is recorded (cassette 
and/ or disk) or stored (ROM) is transferred to the CUSTOMER, but not title 
to the software. 

B. In consideration for this license, CUSTOMER shall not reproduce 
copies of Radio Shack software except to reproduce the number of copies 
required for use on CUSTOMER'S computer (if the software allows a back
up copy to be made), and shall include Radio Shack's copyright notice on 
all copies of software reproduced in whole or in part. 

C. CUSTOMER may resell Radio Shack's system and applications soft
ware (modified or not, in whole or in part), provided CUSTOMER has 
purchased one copy of the software for each one resold. The provisions of 
this software License (paragraphs A, B, and C) shall also be applicable to 
third parties purchasing such software from CUSTOMER. 

RADIO SHACK M A DIVISION OF TANDY CORPORATION 

U.S.A.: FORT WORTH. TEXAS 76102 
CANADA: BARRIE. ONTARIO L4M 4W5 

AUSTRALIA 

280-316 VICTORIA ROAD 
RYOALMERE, N.S.W. 2116 

TANDY CORPORATION 

BELGIUM 

PARC INOUSTRIEL OE NANINNE 
5140 NANINNE 

U. K. 

Bll:STON ROAD WEDNESBURY 
WEST MIDLANDS WS10 7JN 

Printed in U.S.A. 



* * * * * * * * * * * * * * * * * * * * 

* * 
* ALL USERS MODELS I/III * 
* IMPORTANT NOTICE PLEASE READ FIRST* 
* * 
* * * * * * * * * * * * * * * * * * * * 

============================================================= 
Make sure you read the indicated pages for the stock number 
of the package that you are going to use. 

STOCK ADDENDUM PAGES ·ro READ 
NUMBER 
------- ------------------------------------------------
26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7 

MODEL III version page 2 

26-2203 MODEL I version pages 1, 3, 4, 5, and 6 
MODEL III version page 2 

26-2204 MODEL I version pages 1, 3, 4, 5, and 6 
MODEL III version page 2 

26-2206 MODEL I pages 1, 3, 4, 5, and 6 

26-2207 MODEL III page 2 

26-2208 MODEL I pages 1, 3, 4, 5, and 6 

26-2209 MODEL III page 2 

26-1149 MODEL I version page 1, 3, 4, 5, 6, and 8 
MODEL III version page 2, 8 

------- ------------------------------------------------

8759170 



* * * * * * * * * * * * * * * * * * * * 

* * 
* MODEL I USERS * 
* IMPORTANT NOTICE PLEASE READ FIRST* 
* * 
* * * * * * * * * * * * * * * * * * * * 

UPGRADE UTILITY ON TRSDOS 2.3B 
---------------------======================================== 
The MODEL I diskette in this package contains a NEW version 
of TRSDOS which is not compatible with OLD versions of 
TRSDOS, see below for further details. 

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be 
UPGRADEd before use. Once UPGRADEd, a system or data 
diskette becomes a NEW TRSDOS data diskette. 

OLD diskettes used under NEW TRSDOS without UPGRADEing, may 
cause extraneous information to be read at the end of files, 
giving a false End Of File (EOF) indication. Some programs 
will not function properly under these conditions. 

NEW diskettes usel under OLD TRSDOS, may not access all 
data and/or NEW programs may not run correctly. 

If you determine that you need to use the UPGRADE utility 
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B 
UPGRADE UTILITY" contained in this addendum. 

NOTE: When changing from one TRSDOS to the other you must 
use the RESET switch each time the diskette in drive 0 
is changed. 

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN 
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED. 

OLD: 
NEW: 
file: 

program: 

data: 

system diskette: 

data diskette: 

UPGRADE: 

TRSDOS 2.1, 2.2, and 2.3. 
TRSDOS 2.3B. 
A collection of information stored as one 
named unit in the directory. 
A file which causes the computer to 
perform a function. 
Information contained in a file which is 
used by a program. 
A diskette containing TRSDOS. When this 
diskette is placed in drive O and the 
RESET switch is pressed, TRSDOS will begin 
to run. 
A diskette which does not contain TRSDOS. 
If this diskette is placed in drive O and 
the RESET switch is pressed, the screen 
will clear and "NO SYSTEM" will be 
displayed. 
A program contained on the TRSDOS 2.3B 
diskette. 

1 of 8 



* * * * * * * * * * * * * * * * * * * * 
* k 

* MODEL III USERS * 
* IMPORTANT NOTICE PLEASE READ FIRST* 
* * 
* * * * * * * * * * * * * * * * * * * * 

XFERSYS UTILITY ON TRSDOS 1.3 
============================================================= 
The MODEL III diskette in this package contains a NEW 
version of TRSDOS which is not compatible with OLD versions 
of TRSDOS, see below for further details. 
============================================================= 

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be 
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette 
becomes a NEW TRSDOS diskette and should not be used with 
OLD TRSDOS again. If you started with an OLD system or data 
disk, the XFERSYSed diskette will be a NEW system or data 
diskette respectively. 

OLD diskettes used under NEW TRSDOS without XFERSYSing, may 
cause extraneous information to be read at the end of files, 
g1v1ng a false End Of File (EOF) indication. Some programs 
will not function properly under these conditions. 

NEW diskettes used under OLD TRSDOS, may not access all 
data and/or NEW programs may not run correctly. 

If you need to use the XFERSYS utility see the TRSDOS 
section of your TRS-80 MODEL III Disk System Owner's Manual. 

NOTE: When changing from one TRSDOS to the other you MUST 
use the RESET switch each time the diskette in drive 0 
is changed. You may also XFERSYS onto a NEW data disk. 
If this is done, all system files of the system disk 
will be moved onto the data disk. 

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN 
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD. 

OLD: 
NEW: 
file: 

program: 

data: 

system diskette: 

data diskette: 

XFERSYS: 

TRSDOS 1.1 and 1.2. 
TRSDOS 1.3. 
A collection of information stored as one 
named unit in the directory. 
A file which causes the computer to 
perform a function. 
Information contained in a file which is 

- used by a program. 
A diskette containing TRSDOS. When this 
diskette is placed in drive O and the 
RESET switch is pressed, TRSDOS will begin 
to run. 
A diskette which does not contain TRSDOS. 
If this diskette is placed in drive O and 
the RESET switch is pressed, the screen· 
will clear and "Not a SYSTEM Disk" will be 
displayed. 
A program contained on the TRSDOS 1.3 
diskette. 

2 of 8 



TO: owners of the Communications Package, Series I Editor 
Assembler, BASIC Compiler, BASIC Runtime, COBOL 
Compiler, and COBOL Runtime. 

FROM: Radio Shack Computer Merchandising 

DATE: August 18, 1981 

RE: TRSDOS 2.38 for the MODEL I 

Differences between TRSDOS 2.3B and TRSDOS 2.3 are: 

1. variable length records have been corrected, in all 
aspects. 

2. In most cases, your computer will not "hang up" when you 
attempt use of a device which is not connected and 
powered up. 

3. The DEVICE command has been deleted. 

4. The following commands have been added: 

CLS 
This command clears the display and puts it in the 64-
character mode. 

PATCH 'filespec' {ADD=aaaa,FIND=bb,CHG=cc) 
This command lets you make a change to a program file. 
You need to specify: 

'aaaa' - a four byte hexadecimal address specifying 
the memory location of the data you want to 
change 

'bb' - the contents of the byte you want to find 
and change. You can specify the contents of 
more than one byte. 

'cc' - the new contents to replace 'bb' 

For example: 
PATCH DUMMY/CMD {ADD=4567,FIND=CD3300,CHG=CD3B00) 

changes CD3300, which resides at memory location 4567 
(HEX) in the file namea DUMMY/CMD, to CD3B00. 

If this command gives you a STRING NOT FOUND error 
message, this means that either 'bb' does not exist, or 
else 'bb' crosses a sector boundary. If 'bb' crosses a 
sector boundary, you must patch your file one byte at 
a time. For example: 

PATCH DUMMY/CMD {ADD=4568,FIND=33,CHG=3B) 
replaces the contents of the second byte in the above 
example. 

TAPE {S=source device,D=destination device) 
This command transfers Z-80 machine-language programs 
from one device to the other. You must specify the 

3 of 8 



'source device' and 'destination device' using these 
abbreviations: 

T - Tape 
D - Disk 
R - RAM (Memory) 

The only valid entries of this command are: 
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T) 

For example 
TAPE (S=D,D=T) 

starts a disk-to-tape transfer. TRSDOS will prompt you 
for the diskette file specification and ask you to press 
<ENTER> when the cassette recorder is ready for 
recording. 

CAUTION: When doing a tape-to-RAM transfer, do not use a 
loading address below 6000 (Hex), since this would write 
over TRSDOS or the tape command. 

5. These commands have been slightly changed: 

BACKUP now checks to see if the diskette which will be 
your backup copy is already formatted. If it is, BACKUP 
will ask you if you want to REFORMAT it. 

CLOCK will no longer increment the date when the time 
goes beyond 23:59:59. 

COPY now works with only one-drive. For example: 
COPY FILEl:0 to FILE3:0 

duplicates the contents of FILEl to a file named FILE3 
on the same diskette. 

KILL will now allow you to kill a protected file without 
knowing its UPDATE or protection level. To kill this 
kind of file, type an exclamation mark (!) at the end of 
the KILL command. For example: 

KILL EXAMPLE! 
kills the UPDATEd or protected file named EXAMPLE. 
(Note the mandatory space between the file name and the 
exclamation mark.) 

LIST only lists the printable ASCII characters. 

PROT no longer allows you to use the UNLOCK parameter. 

DIR is now in this format: 

Disk Name: TRSDOS 
Filename 
JOBFILE/BLD 
TERMINAL/Vl 
LOADX/CMD 
*** 171 Free 

Attrb 
N*X0 
N*X0 
N*X0 

Granules 

Drive: 0 
LRL #Rec 
256 1 
256 5 
256 5 
*** 

04/15/81 
#Grn #Ext 

1 1 
2 1 
2 1 

EOF 
1 

126 
0 

1. Disk name is the name which was assigned to the disk 
when it was formatted. 

2. File Name is the name and extension which was 
assigned to the file when it was created. The password (if 
any) is not shown. 

3. Attributes is a four-character field: 

4 of 8 



a. the first character is either I (Invisible file) 
or N (Non-invisable file) 

b. the second character is S (System file) or* 
(User file) 

c. the third character is the password protection 
status of the file: 

X - the file is unprotected (no password) 
A - the file has an access word but no 

update word 
U - the file has an update word but no 

access word 
B - the file has both update and access 

word 
d. the fourth character specifies the level of 

access assigned to the access word: 
0 - total access 
1 - kill the file and everything listed 

below 
2 - rename the file and everything listed 

below 
3 - this designation is not used 
4 - write and everything listed below 
5 - read and everything listed below 
6 - execute only 
7 - no access 

4. Number of Free Granules - how many free granules 
remain on the diskette. 

5. Logical Record Length - the record length which was 
assigned to the file when it was created. 

6. Number of Records - how many logical records have 
been written. 

7. Number of Granules - how many granules have been used 
in that particular file. 

8. Number of Extents - how many segments (contiguous 
blocks of up to 32 granules) of disk space are allocated to 
the file. 

9. End of File (EOF) - shows the last byte number of the 
file. 

5 of 8 



TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY 

If you determine that you need to use the UPGRADE 
ut{lity then proceed as indicated below. 

Insert your TRSDOS 2.3B system diskette in drive 0, 
press the RESET switch, and when TRSDOS READY is displayed 
type UPGRADE <ENTER>. Your screen will display: 

TRSDOS DIRECTORY UPGRADE UTILITY 

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO 
1rRSDOS 2. 38 DIRECTORY FORMAT. 

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD 
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN. 

DO YOU WISH TO CONTINUE (Y/N/Q)? 

·rhis means that the directory format on your TRSDOS 
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS 
2.38 format. Once you type Y to continue, the screen will 
display: 

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1. 
PRESS <ENTER> WHEN READY. 

Insert the diskette you want to convert in drive 1 and 
press <ENTER>. After successful conversion, the screen will 
display a CONVERSION COMPLETE message. If you are attempting 
to convert a diskette which has already been converted, the 
screen will display a DISKETTE IS ALREADY A 2.38 error 
message. 

TECHNICAL NOTE 

For all files indicated in the directory that have an End Of 
File (EOF) not equal to zero, UPGRADE will change the number 
of records to be one less than the previous record count. 
Note that in FILEl, the number of records indicated has been 
changed from 10 to 9 after UPGRADE. For FILE2 the records 
indicated remain the same since EOF=0. 

BEFORE UPGRADE 
TRSDOS 2. 1, 2. 2, 2. 3 

FILEl EOF=9 10 RECORDS 
FILE2 EOF=0 10 RECORDS 

AFTER UPGRADE 
TRSDOS 2.38 

9 RECORDS 
10 RECORDS 

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system 
diskette, part of the conversion process will prohibit 
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by 
killing the files listed below: 

SYS0/SYS SYSl/SYS 
SYS3/SYS SYS4/SYS 
SYS6/SYS FORMAT/CMD 
BASICR/CMD BASIC/CMD 

6 of 8 

SYS2/SYS 
SYS5/SYS 
BACKUP/CMD 



, SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER 

========================================================-----
The MODEL I diskette that contains your EDTASM package 
includes TRSDOS 2.3B which is not compatible with TRSDOS 
2.1, 2.2, or 2.3. Therefore, a machine language object file 
created with this package file CAN NOT simply be COPYied 
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette. 

See below for instructions on how to move an object file 
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette. 

============================================================= 
TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B 

ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES 

If for example, you desire to use an assembly language 
function written with TRSDOS 2.3B EDTASM as a "user's 
external subroutine" under the TRSDOS 2.3 BASIC interpreter, 
follow the given steps carefully: 

1) Insert your TRSDOS 2.3B system diskette that contains the 
EDTASM package in drive O and press the RESET switch. 

2) Use the EDTASM package to enter and assemble a routine. 
We have used the SHIFT routine given in Section 7 of your 
TRSDOS & DISK BASIC Reference Manual as an example. 

a) Save the source program using the command: 
W SHIFT/SRC:0 

b) Then assemble the source file with the command: 
A SHIF'r/CMD: 0 

c) Quit EDTASM with the command: 
Q 

d) At TRSDOS READY enter the command: 
LOAD SHIFT/CMD:0 

3) Remove your TRSDOS 2.3B diskette. 

4) Insert your TRSDOS 2.3 diskette in drive O and press the 
RESET switch. 

5) At TRSDOS READY enter the command: 
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09',TRA=X'7D00') 

Reference Section 4 of your manual and note that X'7000' 
is the lowest address that may be used as the origin of 
your programs. 

6) The file on this diskette, named SHIFT/CMD, may now be 
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the 
BASIC interpreter as a user's external subroutine. 

7 of 8 



* * * * * * * * * * * * * * * 
* * 
* IMPORTANT NOTICE * 
* FOR * 
* COMMUNICATIONS PACKAGE * 
* DISK SYSTEM USERS * 
* * 
* * * * * * * * * * * * * * * 

The 26-1149 Communications Package is delivered on MODEL I 
TRSDOS 2.3B and Model III TRSDOS 1.3. Communication can 
occur MODEL I to I, III to III, or I to III, but only under 
MODEL I TRSDOS 2.3B and MODEL III TRSDOS 1.3. 

Data on MODEL I TRSDOS 2.1, 2.2, or 2.3 must be UPGRADEd to 
2.3B beofre it can be transmitted. Backup the diskette 
before UPGRADEING. 

Data on MODEL III TRSDOS 1.1 and 1.2 must be XFERSYSed to 
1.3 before it can be transmitted. Backup the diskette 
before XFERSYSing. 

NOTE: Radio Shack Application programs on TRSDOS 1.1, 1.2, 
2.1, 2.2, or 2.3 were tested on the particular 
version of TRSDOS they were purchased on. 

No guarantee is implied that these programs will 
work correctly after being UPDATEd to MODEL I TRSDOS 
2.3B or XFERSYSed to MODEL III TRSDOS 1.3. 

IMPORTANT NOTE FOR MODEL I USERS: You cannot run BASIC 
programs because TRSDOS 2.3 does not contain DISK BASIC. 

On page 20 of the Communications Package manual, we suggest 
you use SAVE, a DISK BASIC command, to save a transferred 
BASIC tape program on diskette. You will not be able to use 
the SAVE command with the TRSDOS 2.3B diskette, since it 
does not contain DISK BASIC. 

8 of 8 



Addendum to the 
Communications Package Manual 

Catalog Number 26-1149 

Please make these corrections to your Communications Package 
manual: 

1. Page 16: Change <SHIFT> <X> to <SHIFT> <down 
arrow> <X>. In the next sentence, change <SHIFT> 
<down arrow> to <SHIFT> <up arrow>. 

2. Page 32: Memory location 16889 should be set to 
108 rather than 104. 

3. Page 35: Please note that the control function 
does not work on some of the early Model III's. You 
will have to press RESET to exit the TERM program 
and ·return to BASIC or TRSDOS. 

If you have a Model III, please note the following regarding 
how to transfer tape data files (described in the manual on 
pages 22 and 23): 

COMPROG will prompt you and your friend with Cass? 
before each block (portion) of data is transferred. 
Both of you must specify the baud rate in response 
to each of these prompts. 

BASIC data files may only be transmitted at a low 
baud rate. Therefore, when transmitting a BASIC 
data file, you must respond to all the Cass? prompts 
with L. If you will be writing a program to read 
the file, you must specify the low baud rate before 
running the program. 

We suggest that you use only a tape which contains 
a single data file. (If you have more than one 
data file on a tape, you will have to manually stop 
the tape recorder after the file is transmitted. 
Otherwise, COMPROG will continue transferring all 
the data on the tape.> 

Note for Tape System Customers: 

If you exit one of the communications programs, you can 
return to it with the SYSTEM command (providing the program 
in memory has not been over-written). Type SYSTEM <ENTER>. 
In response to the*? prompt, type/ followed by the 
program's transfer address . 

For the HOST and TERM pr ograms, the transfer address is the 
Memory Size address (listed on page 8) plus one. For the 
COMPROG program, the transfer address is 46357 on a 32K 
system, or 62741 on a 48K system. 

Thank You! 
Radio Shack 

A Division of Tandy Corporation 
875-9141 


	e000-doc_20100818071909.pdf
	e000-doc_20100818073929.pdf
	e000-084-doc_20100818073343.pdf
	e085-166-doc_20100818073641.pdf
	e167-212-doc_20100818072817.pdf
	e213-end-doc_20100818073001.pdf
	e999-doc_20100818073854.pdf
	e-998Copy of doc_20100818073938.pdf
	one.pdf
	1
	2




