TRS-80 MODEL VIII

SERIES | ﬁ"‘
EDITOR
ASSEMBLER

Radio Mack Rt

A DIVISION OF TANDY CORP.

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK

TRS-80 Series-I Tape/Disk Editor/Assembler © 1981 Tandy Corpo-
ration. All rights reserved.

Derived from original Tape Editor/Assembler © 1978 Microsoft.
Licensed to Tandy Corporation.

Series I Editor Assembler Manual © 1981 Tandy Corporation. All
rights reserved.

Reproduction or use without express written permission from Tandy
Corporation, of any portion of this manual is prohibited. While rea-
sonable efforts have been taken in the preparation of this manual to
assure its accuracy, Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual, or from the use of the
information obtained herein.

Please refer to the Software license on the back of this manual for lim-
itations on use and reproduction of this Software package.

NOTICE TO MODEL III OWNERS OF THE
SERIES I EDITOR/ASSEMBLER
Catalog Number 26-2011

When operating the Editor/Assembler, you will use the
<SHIFT> key to type certain symbols, such as &, #, $, or *,
Use the LEFT <SHIFT> key only. Do not Tuse the right
<SHIFT> key to type these symbols.

8759128

Important Note to
Model lll Users

From time to time, Radio Shack may release new versions of TRSDOS, the
TRS-80 disk operating system. Check with your local Radio Shack or the
TRS-80 Microcomputer News for notices and instructions on these
enhanced versions of TRSDOS.

If you receive a new version of TRSDOS, read the following before making

any modifications to your existing software packages (applications. lan-

guages, or system utilities):

» Do not convert your Radio Shack software packages for use with the new
version of TRSDOS unless you are instructed to do so.

- Before converting a Radio Shack supplied Model | software package to a
Model Il format, check to see if Radio Shack provides a Model Il version
of the package. If so, you should obtain a copy of that version.

- If you're using several different software packages, press the RESET but-
ton whenever you change software.

Thank-You!

Radio fhaek

¢ A Division of Tandy Corporation

8759106

i

CONTENTS

N O o b W

Table of Contents
Jntroduction ... 1
What is an Editor/Assembler? 1
The Series-1 Editor/Assembler 1
The Scope and Organization of This Manual 3
Notation Conventions o.... 4
. Loading the Editor/Assembler 5
Tape Systems— Level Il and Model llI BASIC 5
Tape Systems—Level | 5
Disk Systems 6
.Usingthe Editor 7
.Using the Assembler 21
. Sample Programming Session 31
. The z-8o Instruction Set 45
. Appendices
A. Using the Tpsrc Utility (Disk Systems Only) 227
B. RoM and TRSDOS /O Subroutines 228
C. z-80 Status Indicators (Flags) 231
D. Numerical Listing of z-80 Instruction Set 234
E. Alphabetical Listing of z-so Instruction Set 240
F. z-80 crpu Register and Architecture 246
INdeX ... 253

INTRODUCTION

Part One:

Introduction

What Is an Editor/Assembler?

An editor/assembler is a two-part program that lets you communicate with a
computer in its low-level, ‘‘native’’ language, rather than in some high level,
““foreign’’ language like BASIC or FORTRAN. We call this native language
‘‘machine-language .’

Using the editor, you enter the machine-language source code, consisting of a
convenient set of abbreviations and symbols. The assembler then converts or
assembles this into object code, which the Computer understands.

But I thought my TRS-80 spoke BASIC!

Well, you're right, it does. But only because it contains a built-in BASIC
interpreter. This interpreter converts or interprets your BASIC programs into
object code, which the computer can understand.

With a Built-In Interpreter, Who Needs Machine-Language?
Well, if you—

* Enjoy learning how things — especially, computers — work;

* Want to do things faster than Basic will allow;

* Want to make the most efficient use of your Computer’s memory;
* Want to modify the way your computer inputs and outputs data

—then you need machine-language. (Of course, there are plenty of other
reasons you may want to use it.)

The Series-1 Editor/Assembler

There are two versions of this software package, one for tape and one for disk
systems.

Tape Version

Three cassette tapes are included. One contains EDTASM, which is the Editor/
Assembler. Level II and Model Il BAsIC customers may load and run this tape
using BASIC's SYSTEM command. The second tape contains SYSTEM. This
program is for Level I customers with a minimum of 16K memory. It is loaded

SERIES | EDITOR/ASSEMBLER
A I R O R S N DR RIS

with the cLoAD command, and prepares the Level I Computer to load the
EDTASM tape. The third tape contains a sample program for tape systems with at
least 32K of RAM. If you have only 16K, you can still type in and use the sample
program given in Section 5.

Disk Version

Two diskettes are included. There is one in Model I TRSDOs format and one in

Model I1I.

The disk version software includes three programs:

* EDTASM, the Editor/Assembler program

* SAMPLE/SRC, a source listing of all the z-80 instructions

* TPSRC, a utility to read source tapes written by the tape version of the Editor/
Assembler and two write object ‘‘SYSTEM’’ tapes.

The Series-1 Editor/Assembler is especially good for beginners of machine
language programming. Its commands and features are fairly simple, and it does
not require that you understand advanced programming concepts. On the other
hand, experienced programmers will find this editor/assembler a workable tool
for all but the most complex, large-scale applications.

Features

Editor Features

* Automatic line numbering for convenient source-code entry.

¢ Line renumbering command with automatic renumbering if necessary.

* Single-letter commands plus optional parameters.

* Global search capability for changing your source text.

* Source text may be saved on tape or disk, depending on your computer
system.

* Source files on tape or disk may be loaded or ‘‘chained’’ in memory.

* Source text may be listed to the printer.

Assembler Features

¢ Controlled by a single-letter command with optional switches.

* Options include: wait on error, no symbol table, list to printer, and trial
assembly with no object code output.

* Supports labels up to six characters long.

* Eight pseudo-ops.

* Resides in memory with the Editor, so you can easily go back and forth
between editing and assembling.

INTRODUCTION
L s S S e

Scope and Organization of This Book

In this manual, we will show you how to use the Editor/Assembler. Along the
way, we’ll cover a few principles of assembly-language programming. We’ll
include a sample program. Even if you don’t understand assembly-language
programming, you should be able to try out this sample program.

In the next section (Section 2), we’ll tell you how to load the Editor/Assembler.
We’ll assume you already know how to start-up your Computer, and to get it to
the BASIC READY level (cassette systems) or to the TRSDOS READY level (disk
systems). There are separate loading instructions for:

* Tape systems— Level 1
* Tape systems— Level 1l and Model III Basic
* Disk systems— Models I and III TRSDOS

In Section 3, we’ll show you how to use the editor. This section is organized for
ease of use the first time through. For quick reference later on, there’s an
alphabetical summary of all editor features at the end of Section 3.

In Section 4, we describe the assembler. Here we’ll simply explain the assembly
command format and syntax. You’ll need this information when you get around
to writing your own assembly-language programs.

In Section 5, we present a sample assembly-language program. We go through
all the procedures, from entering the program to loading and executing the
assembled version.

Section 6 is a complete z-80 instruction set— the native language of your TRS-80.

This manual is written for use with Model I or Il systems using either tape or
disk storage. There are a few operational differences, depending on which
system you have. In these cases, we have written separate instructions for the
differing systems. Follow those pertaining to your Computer.

What else do I need?

To write your own assembly-language programs, you’ll need more information
than is contained in this manual. If you know z-80 or another assembly
language, this manual will probably be sufficient. But if you’ve never done any
assembly-language programming, you’ll need to do some further study.

Radio Shack sells an ideal book for future TRS-80 assembly-language
programmers: TRS-80 Assembly Language Programming, by William Barden, Jr.
Its catalog number is 62-2006. Although it was written specifically for the
Model I TRs-80, most of it applies as well to the Model I1I.

SERIES | EDITOR/ASSEMBLER

Notation and Special Terms Used in This Book

Notations

COMPUTER TYPE

italic type
KEY

[optional
information|

Special Terms

source code (or text)
source file
object code

object file

Indicates material that is input to or output from the
Computer. Note: All computer prompts in this manual
are given in uppercase.

Represents variable information that you provide in a
command. (i.e., file names, line numbers, etc.)

Key which you should press. These will not be visible
on the screen.

Square brackets enclose optional parts of a command.

An assembly-language source program you have loaded
from tape or disk or typed.

An assembly-language source program you have saved
on tape or disk.

The output from the assembler, i.e., coded z-80
instructions.

Object code stored on tape or disk so that it may be
loaded and executed.

LOADING THE EDITOR/ASSEMBLER

Part Two:
Loading the Editor/Assembler

Tape Systems— Level II and Model III BASIC

The Editor/Assembler is a machine-language program stored on tape at 500
baud. Its file name is EDTASM.

1. Turn on your Computer and press to the prompt for memory size. (In
Model III systems, first type L to the CASS? prompt.)

2. Get your recorder ready to play the Editor/Assembler tape.

3. Type SYSTEM (ENTER), then EDTASM (ENTER). The Computer will begin loading
from the tape. After a successful load (takes about 2 minutes), the *? prompt
will reappear.

4. Type / (ENTER). The Editor/Assembler starts by displaying a heading followed
by an asterisk at the beginning of the next line. The asterisk is the prompt,
telling you the Editor/Assembler is waiting for a command.

Now skip to Section 3.

Tape Systems—Level I BASIC

Before you can load the Editor/Assembler tape, you must get your Computer
into a ‘‘system’” mode. The SYSTEM tape does this.

1. Turn on your Computer. It should be in the READY mode.
2. Get your recorder ready to play the SYSTEM tape.

3. Type CLOAD (ENTER). The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), a "PRESS ENTER WHEN CASSETTE
IS READY" will appear on the next display line. Your Computer is now in
the system mode.

4. Prepare the recorder to play the EDTASM tape.

5. Press (ENTER). The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), the Editor/Assembler will start by
displaying a heading followed by an asterisk at the beginning of the next line.
The asterisk is the prompt, telling you the Editor/Assembler is waiting for a
command.

SERIES | EDITOR/ASSEMBLER
B B P D A A AN

6. Volume setting may need to be adjusted for a successful load.

Now skip to Section 3.

Disk Systems

The program file name for the Editor/Assembler is EDTASM/CMD.
1. Under TRSDOS READY, type: EDTASH (ENTER).

2. The Editor/Assembler will start by displaying a heading, followed by an
asterisk on the next line. The * is the prompt, indicating the Editor/
Assembler is waiting for a command.

USING THE EDITOR

Part Three:
Using the Editor

Assuming you have just started the Editor/Assembler, it is displaying an asterisk
on the screen. This is the ‘“prompt.’ It tells you the Editor/Assembler is waiting
for a command.

The Editor consists of commands that allow you to create, edit, save and load
your source programs. We’ll divide these commands into three groups:

¢ Text-handling — creating and modifying the source program.
e File input/output— saving the program on disk or tape and loading it from disk
or tape.

* Miscellaneous — getting the memory status, exiting from the Editor/
Assembler.

Special Terms

Before using the commands, we need to define a few special terms used in this
section.

“text’” is the information (source program) that you have entered into the
Computer. The insert command allows you to begin entering text one line at a
time, pressing (ENTER) at the end of each line. The Editor automatically numbers
each line.

““text buffer’” is the area in memory where your text is stored.

“‘current line’” is the line most recently entered, displayed, or referenced in a
command.

‘“file’” is the source text stored on tape or disk.

‘*file name’’ is the name given to the file. In tape systems, the file name consists
of from one to six letters or numbers. In disk systems, the file name follows the
rules of TRSDOS file specifications (for full details, see your TRSDOS reference
manual):

filename [/ext] [.password] [:d]

“inc’” or “‘increment’’ refers to the number which is used to compute
successive line numbers for your text. When you start the Editor, the increment
equals 10.

SERIES | EDITOR/ASSEMBLER

““line ret”” or ‘‘line reference’’ is the way you specify a single line in your text.
A line reference may be any number from 0 to 65529, or any of the following
special symbols:

First line in the text buffer

' The current line

¥ The last line in the text buffer

“‘line range’’ indicates a range of lines in your text file; it is a pair of line

references separated by a colon.
line-ref:line-ref

““ror”” and ‘‘EOF’" —refer to top of file (first line) and end of file (end of file).
The Editor will use these abbreviations in certain messages to you.

Sample Commands

These examples are simply to show the use of the special terms and notation.
g’he %ommands are explained later in detail.

i “*Print line 100.°
Po#:, “‘Print text from the first line to the current line.
D . “‘Delete the current line.”’
I line ref.,inc **Start inserting at line, using inc as an increment between

lines. (*‘line ref.”” and *‘inc’’ are variables you replace with
appropriate values.)

A Few Words about Spaces

In general, spaces are not significant inside editor commands. You may use
them or omit them. Exception: No spaces inside a file name, line reference or in
the command (F)-Find.

Special Keys

ENTER To complete a command or a line of text, you must press this
key.

BREAK To cancel a command or to stop inserting text, press this key.
The line that the (BREAK) is pressed is not saved. Press (BREAK
on the line following the last line.

(=) Press this key to see the previous line of text.

(=) Press this key to see the next line of text.

© This key erases the previously typed character.

) This functions as a tab key. You will use it while inserting

text. The tab positions are spaced eight columns apart.
LEFT (SHIFT) () This erases the line you have been typing.

@ This causes a pause in a listing or printout. Press any key to
continue.

Editor Commands

We’ll cover the commands in a typical sequence in which you might use them.
For an alphabetical summary, see the end of this section.

USING THE EDITOR
VU R S e SRR L AR R S R TR e e R e e e

Text Handling Commands

Inserting Your Text

When the asterisk is displayed, you may type in a command — not your source
text. To enter source text, you must get into the insertion mode.

First, to get your Computer “‘in step’” with our examples, type D #:* (ENTER).
That erases any text that you might already have entered into the text buffer.

Now we’ll go into the insertion mode. Type I (ENTER). The Computer will
display 00100. All we do is type in text for line 100 and press (ENTER). The
Computer will automatically provide the next line number.

PR10@ 5 ANY CHARACTERS FOLLOWING A SEMI-COLON (3) IS A
COMMENT (ENTER
o0110

We may continue like this until we finish entering the text. Remember to press
ENTER) at the end of each line.

@eii@ 5 PRESS -: AT THE START OF THE NEXT LINE (ENTER
o120 RET A VERY SHORT PROGRAM (ENTER
Bo130

In line 120, we pressed tab (#) once at the beginning of the line, and once after
RET. Tabs are very important in source programs; they are used instead of spaces
to separate the standard fields in an assembly-language program. (We’ll explain
further in part 4.)

That’s all the text we want to type in for now, so press BREAK). The asterisk will
reappear on the next line.

Displaying Your Text

To see the text, use the Print command. For example: P #:* (ENTER). This tells
the Computer to display all the lines in the text buffer. To see a single line,
specity that line, as in: P 700 (ENTER). Another way to display lines one at a time
is with (@) (previous line) and (&) (next line).

If you omit a line reference, the Computer will display a screenful of lines,
starting at the current line. This is a good way to look at a large text file, one
screenful at a time. Simply press P (ENTER) to see the next screenful.

Note: If the total file is to be displayed you may execute T (ENTER) prior to Print
command to insure that current line is TOF.

Getting a Hard-Copy of the Source Program

To output to a line printer instead of to the display, substitute “*H’’ (hard copy)
for “‘p”’. For example, the command H #:* prints out the entire source program.
If printer is not ready press (BREAK) to return to command line.

(For instructions on getting hard copy of an assembled program, see Section 4.)

SERIES | EDITOR/ASSEMBLER
3 T S S S AT O TR

Adding Lines between Existing Lines

Suppose you want to add a line between lines 100 and 110. Use the Insert
command, but specify a starting line number between 100 and 110:

I 105

P@1@5 THIS LINE IS ADDED (ENTER
20115 (BREAK

*

When you pressed (ENTER) for line 105, the Computer used the current increment
(10) to generate line 115, which will not be between 100 and 110. To insert more
than one line between any two lines, you can specify an increment of 1.

For example,

I 1@85:1 (ENTER
00106

Line 105 is already in use, so the Computer gives you the next number, using an
increment of 1:

@0106 SWE‘LL JUST TYPE IN A FEW LINES

@01@7 INOTICE THAT THE INCREMENT OF 1 IS STILL IN USE (ENTER
00108 FWHAT WILL HAPPEN WHEM WE REACH LINE 1107 (ENTER

@0109 FTHAT LINE IS ALREADY IN USE . .+ . (ENTER

getie i, , » BUT EDTASM GIVES YOU THAT NUMBER ANYWAY. (ENTER
@@111 (BREAK

A line “‘collision’” was about to occur when you entered line 110, since that
number was already in use. So the Editor automatically renumbered all lines.

To begin inserting lines at the end of the file, use the Bottom command,
B (ENTER). This makes the current line the last line.

Changing a Line in Your Text

To make a change within a line of text, use the Edit command. This puts you in
a special intra-line edit mode in which several useful functions are available. To
begin editing a line, type E followed by the line number (or line symbol ““#"’,
“x 0 7%y and press (ENTER). The Computer will display the line number
followed by the cursor (blinking block or underline). This is your *‘working
copy’’ of the line. Changes you make will not take effect until you exit from the
intra-line edit mode.

To exit from the intra-line edit mode, press (ENTER) or E (ENTER) and changes are
saved. Press (BREAK) or § (ENTER) and the line remains in its original form.

10

USING THE EDITOR

Here are the functions available in the intra-line edit mode:

O

n (SPACEBAR

@

n®c

n @
n® c

n©cl...cn
®

@ newtext

®
G

ENTER) or (E)

BREAK) or @

Lists the line in its current form and starts a new working
copy on the next line.

(Spacebar) Moves the cursor forward n spaces, showing the
next n characters in the line. If n is omitted, 1 is used.

Moves cursor back one space in the line, but does not erase
the character from the working copy.

(Search) Positions the cursor at the nth occurrence of
character ¢, counting from the current cursor position. If n
is omitted, positions to the first occurrence after the current
position.

Deletes the next n characters. If n 1s omitted, 1 is used.

(Kill) Deletes all characters up to the nth occurrence of
character c. If n is omitted, deletes up to the first
occurrence.

Changes the next n characters to characters ¢/ . . . cn.
(Again) Cancels all changes made and lets you edit the line
again.

Insert newtext. Insertion will continue until you press

(&) or (ENTER). While inserting, the (4) key will erase
a character, and the will insert a space. You must
exit from this insertion function before you can use any of
the other editing functions.

(Extend) Begin inserting at the end of the line.

(Hack) Delete remainder of the line and begin inserting at
the current position.

Exits to the * command level. The changes you made will
take effect.

(Quit) Exits to the * command level. The changes you made
will be canceled.

The best way to learn to use these edit functions is to experiment with them. For
example, type E to start editing the current line. The Computer will
display the line number. Press (U to see the line in its current form and start a
new working copy. Now try each of the commands listed above.

Remember: To exit from the intra-line editor at any time, press (ENTER). To stop
the insertion function but continue editing, press (SHIFT) (=).

11

SERIES | EDITOR/ASSEMBLER
T B T N S R S R PR O WIS

Replacing a Line

You cannot use the Insert command to replace a line, because the Computer will
always renumber the lines in case of a line collision. To replace a line, type
followed by the line reference and press (ENTER).

For example, to replace line 100, type: & 100 (ENTER). The Computer will
display 00100. Go ahead and type in the new text for this line. When you press
(ENTER), the Computer will act just as it does in the line insertion mode: it will
compute a new line number using the current increment and renumbering the
lines if necessary to avoid a collision. From this point on, you are inserting, not
replacing. Only line 100 is replaced.

Deleting Lines

To delete a range of lines, type D line range. For example,

D 100 Deletes line 100

D . Deletes the current line

D 100:120 Deletes all lines from 100-120
D #:% Deletes all lines (first to last)

Finding a String within Your Text

The Find command searches through your text for any one word string you
specify, and tells you which lines contain the text.

Suppose you have a large text file in memory, and you want to change each
occurrence of “‘LBL’’ to “‘LABEL.” The Find command will identify each line
that contains “‘LBL.” Simply type: T to position the current line to the
beginning of the text, then type FLBL (ENTER). The Computer will search for the
string of characters immediately following the F and ending with the carriage

return ((ENTER)).

The editor will print the line number of the first occurrence of LBL. That line
becomes the current line. You may begin editing it by typing E (ENTER).

To find subsequent occurrences of LBL, simply type F (ENTER). The editor
continues searching at the current position and remembers the string being
searched.

Remember: (1) Type in the search string immediately after the *‘F’” with no
spaces, unless the search string starts with spaces. (2) The Find command
begins searching at the current line, so set the current line to TOF first if you
want to search through the entire text.

Renumbering Your Text

After inserting lines (and having them automatically renumbered), you may
want to renumber them ‘‘manually.’”” The Number command does this. Type N
start-line, increment (ENTER). Start-line will be the lowest-numbered line in the
renumbered program.

12

USING THE EDITOR
S S R S s Sk R O

For example, the command: N 1000:10 (ENTER) renumbers the text 1000,
1010, 1020, etc.

After renumbering, the current line is the last line in the file, and the increment
is what you specified in the N command.

If no start line is typed, the renumbering will begin with the current line. If no
increment is specified, 10 is used.
Source File Input/Output Commands

In this section, we’ll show how to save a source program and then reload it.
(For instructions on outputting and loading an object file, see Section 4.)

There are three general groups of editor 10 commands:

* Writing the source program to tape or disk

* Loading the source program from tape or disk

* Printing the source program on the display or on a line printer. We’ve already
described these commands (H and p).

Saving the Source Program

Once you have typed in and edited a source program, you should save it on tape
or disk. That way, if you ever need to modify the source program, you won’t
have to retype it; you can simply load it and make changes.

The tape version of Editor/Assembler always assumes you want tape 1/0, and the
disk version assumes you want disk 1/0. (Disk systems may load source tapes
via the TAPESRC utility, described later in the appendix.)

Note to Model III Customers: All tape 10 is done at 500 baud, regardless of the
cassette baud rate you selected when you started up the Computer.

Tape Systems
1. Using a blank cassette tape, put your recorder into the record mode.

2. Type W file (ENTER). Use a file name from one to six characters. You may omit
the file name, in which case the tape file will be named NONAME.

Example:
W MOVE (ENTER

3. The Editor/Assembler will prompt you to get the cassette recorder ready. Be
sure it’s in the record mode, then press (ENTER). The Editor/Assembler will
write the text onto the tape.

4. After writing the tape, the Editor/Assembler will return to the command
mode (asterisk).

5. Make at least one additional tape copy of the program.

13

SERIES | EDITOR/ASSEMBLER
P S S SR S

6.

Di:

1.

Remove the tape from the recorder and label it. Be sure to identity it as a
source tape.

sk Systems

Type W file (ENTER). For file, use a standard TRsSDOS file name with an optional
password and drive specification. The Editor will automatically add the
extension /SRC to the file name. To override this, include a different extension
in the file specification.

You may omit the file name, in which case the file will be called NONAME/
SRC.

Example:
W MOVE (ENTER

writes the source program into the file MOVE/SRC.

. After writing out the file, the Editor will return to the command mode

(asterisk).

Loading a Source Program

Tape Systems

l.
2.

Prepare the recorder to play the source tape.

Type L file (ENTER). For file, substitute the correct file name. If there are
several files on the tape, the Editor will search through them until it reaches
the one you named. You may omit the file name, in which case the first file
on the tape will be loaded.

Before the Editor starts loading from the tape, it will prompt you to get the
cassette recorder ready. Press (ENTER) when ready.

. After loading the source program, the Editor will return to the command

mode (asterisk).

Disk Systems

l.

14

Type L file (ENTER). For file, specify the file in standard TRSDOS form. If the
specification you give does not include an extension, the Editor will
automatically use the extension /SRC.

You may omit the file specification. The Editor will then attempt to load a file
named NONAME/SRC.

USING THE EDITOR
L S

(If you already have a source program in the text buffer, the Editor will
warn you:

TEXT IN BUFFER. CHAIN FILES?

If you want to add the disk file onto the end of the current text in memory,
type ¥ (ENTER). This will chain the new file onto the end of the file in memory
and automatically renumbers the total file. If you don’t want to ‘‘chain’’ the
files, but wish to erase the current file and load the new one, type N (ENTER).)

2. After loading the file, the Editor will return to the command mode (asterisk).

Miscellaneous Commands

Determining the Memory Status

To find out the size of the current source program and the amount of free
memory, type M (ENTER). The status will be shown in bytes.

Exiting from the Editor/Assembler

The quit command (@ (ENTER)) takes you out of the Editor/Assembler and back
to TRSDOS or BASIC (if you are in a level II computer). Before using this
command, be sure to save your source program, if desired, because you won’t
be able to recover it simply by restarting the Editor/Assembler.

15

SERIES | EDITOR/ASSEMBLER
o

Editor Error and Warning Messages

BAD PARAMETER(S) This indicates that you gave the
editor an invalid command.
Check the syntax used, and the
values of parameters given (they
may be out of range).

BUFFER FULL The area assigned to text
storage is full. You may be able
to split the source text into two
modules.

LINE NUMBER T0O LARGE | During the generation of new line
numbers (insertion or line
renumbering) a line number
greater than 65529 was needed.
This is too large. Use a smaller
line number increment.

NO SUCH LINE A reference was made to an
unused line number.

NO TEXT IN BUFFER All commands except load,
insert, memory-status, and quit
require some text to be in the
buffer.

STRING NOT FOUND You issued a find command and
the editor could not locate the
string you specified. Be sure you
had the current line set properly
(find begins searching at the
current line number).

16

USING THE EDITOR
e

Editor/Assembler Alphabetical Summary

Special Keys

ENTER Executes the current command.

BREAK Cancels or interrupts a command.

© Erases the last character typed.

() Displays the previous text line.

(=) Displays the next text line.

SHIFD (&) Erases the entire line. (Use left
shift key only)

) Tabs forward eight spaces.

Pauses execution of a command;
press again to continue.

SHIFT) (&) Escapes from the character
insertion command in the edit
mode. (Use left shift key only)

Symbols and Abbreviations

$*

*

line ref

line range

inc

First line in text
Last line in text
Current line in text

A single line number or line symbol
(#, ", or.).

A pair of line refs separated by a
colon (line ref : line ref)

An increment between lines.

17

SERIES | EDITOR/ASSEMBLER
S A Y S

Commands
A [file] [,switch. . .] Assemble. Switches are: LP (line
printer, We (wait on error), NL (no
listing), NS (no symbol table), NO
(no object code output).
B List bottom (last) line of text.

D [line ref or line range] | Delete line(s).

E [line ref] Edit line ref.

Subcommands

Lists working copy of line

n Advance n spaces.

@ Backspace 1 space.

n®c Search for nth occurrence of c.

nD® Delete next n characters.

n®c Kill up to nth occurrence of c.

n©cl...cn Change next n characters to
cl...cn.

® Cancel changes and start again.

@ newtext Insert newtext. Press or
(=) to quit.

X Extend line.

® Hack rest of line and begin
inserting.

or ®) Exits to the command level;
changes take effect.

or@ Cancels changes and quits editing.

F [text string] Find the text string immediately

following the letter “F”; or find the
current text string. (No space
between (F) and text string).

H [line range] List lines on the printer. If printer
not ready use to recover.

I [line ref] [,inc] Insert at line ref using inc. If no
line ref has been determined 100
is used.

L [file] Load a source file.

M Display memory status.

N [line ref] [,inc] Renumber text.

P [line range] List lines on the display.

18

USING THE EDITOR

r [line ref]

W [file]

Quit Editor/Assembler; return to
TRSDOS or BASIC (Level II).

| Replace line and continue in the

line insertion mode.
List top (first) line of text.

Write a source file.

19

USING THE ASSEMBLER

Part Four:

Using the Assembler

In Section 3, we showed you how to type in, edit, and save a source program.
For a source program, we used an arbitrarily chosen text.

Now we are ready to discuss the assembler — the software that converts your
source text into object code that can be understood by the TRS-80°s Z-80
microprocessor, and writes this object code to a tape or disk file. We’ll break
this section up into three parts:

A. The Assemble command — syntax, options, file output, error conditions, etc.

B. Assembler language — definitions, syntax, input/output format, etc.

If you’re new to assembly language, you don’t have to read all this now. You
may skip to Section 5, which presents a sample programming session. This will
give you hands-on experience with the Editor/Assembler. Then, when you come
back to this section, you’ll have a better idea of what it’s all about . . .

The Assemble Command

You enter the Assemble command at the command level (asterisk). It consists
of the abbreviation ‘‘A’’ followed by a space and an optional file name and
optional switches. (We call them *‘switches’” because they turn various
functions on and off.)

There are various combinations of spaces and commas that will work in the
assemble command. For simplicity, we’ll stick with one workable set of rules
for command syntax.

A [file] [,switch . . .]

The file name and switch are optional. (If no file name is used, you must still
type in a space after the ‘*A.’) Every switch used must be preceded by a
comma. Spaces before or after the file are acceptable and have no effect.

A source program must be originated in RAM or loaded into RAM before it can be
assembled.

21

SERIES | EDITOR/ASSEMBLER
A S T o S R L

For example:
A ZAP:NSNL+WE (ENTER

“zaP’’ is the file name; ‘NS’ *'NL’" and **WE’’ are switches. The commas are
required. The meaning of this and the following commands will be explained in
the following pages.

A INOSWE NS
No file name is given.
As another example:

A (SPACEBAR) (ENTER)

No file name or switches are specified.

File Name

The file name you specify will be assigned to the tape or disk object file. If you
omit a file name, ‘“NONAME’’ will be used. (For further details, see File Output
later in this section.)

Switches

If you don’t specify any switches in your assemble command, the Assembler

will do the following:

* Print the assembly listing on the screen

* Print error and warning messages in the listing without pausing

* Print a symbol table after the listing is completed

* Output the object code to tape or disk, using the file name you specified (or
““NONAME’’ if you omitted one)

Here are the switches available. You may use as many as you want in any order.

Remember to put a comma before each switch used.

LP (Line printer) Output listing, error messages, and
symbol table to the line printer, not to the display.

WE (Wait on error) Pause after each error message;
operator presses (ENTER) to continue.

NL (No listing) Don’t output an assembly listing.

NS (No symbol table) Don’t output a symbol table.

NO (No output) Don’t output any object code.

22

USING THE ASSEMBLER

File Output— Disk Systems

If you do not specify the NO switch, and if no terminal errors occur during the
assembly, the Assembler will write the object code to the disk file you specify.

Use a standard TRSDOS file name with an optional password and drive
specification. The Assembler will automatically add the extension *‘/cMD’’ to
the file name. To override this, include a different extension in the file
specification.

If you omit a file specification, the Assembler will use ‘°“NONAME/CMD’’ as the
object file.

Examples:

A ZAPNOsWE

Waits on errors, does not output object code.

A ZAP4LP

Outputs the assembly listing to the printer, outputs object code to ZAP/CMD.
Use of Object Files

Every object file is stored in a special format that allows it to be loaded and
executed by TRSDOS. An object file cannot be loaded by the Editor/Assembler.
(Since it is no longer in text form, the Editor/Assembler can’t do anything
with it.)

To load and execute an object file program while you are in the TRSDOS READY
mode, type the file name and press (ENTER). If the extension is “/cCMD,” you
don’t need to include it in the file name.

To load an object file and return to TRSDOS READY, type LOAD filename (ENTER).
In this case, you must include the extension even if it is */cMD.” For further
details on the use of object files, see Section 5.

Now skip ahead to ‘*Assembler Error Messages.”

File Output— Tape Systems
Note to Model 11l Customers: All tape output is done at 500 baud.

If you do not specify the ‘N0’ switch, and if no terminal errors occur, the
Assembler will write the object code to cassette tape, using the file name you
specify. The file name may be from one to six characters long. If you omit one,
““NONAME’’ will be used.

Before writing the tape, the Assembler will prompt you to get the cassette ready.
Using a blank tape, prepare the recorder to record; when ready, press (ENTER).
The Assembler will then write the tape.

Make at least two copies of each object file. Remove the cassette and label it as
an ‘‘object’’ tape.

23

SERIES | EDITOR/ASSEMBLER

Use of Object Tapes

Object tapes are stored in a special format for loading via the SYSTEM command.
(Level I systems must first load the SYSTEM tape; then the object tape.) An
object file cannot be loaded by the Editor/Assembler. (Since it is no longer in
text form, the Editor/Assembler can’t do anything with it.)

To load an object tape while in BASIC, type: SYSTEM then filename
. After the tape has been loaded, you may press to return to

BASIC, or / address to begin execution at the specified address. If you
type / (ENTER), omitting the address, an address specified on the tape itself will
be used. (For details, see the Section 5.)

Assembler Error Messages
Four kinds of errors may occur after you enter an assemble command.

1. Command errors. If there is an error in your command, no assembly will be
attempted. The Assembler will display the message *‘BAD PARAMETER(S)’

2. Terminal errors. During assembly, an unrecoverable error occurred. The
assembly is cancelled.

The only terminal error is **SYMBOL TABLE OVERFLOW.’’ This occurs when
there is not enough memory to handle the symbol tables required for
assembly. Use a machine with more memory (if possible), or break the
program up into modules and assemble them separately.

3. Fatal errors. One of the source lines contained an error. No object code is
generated for the offending line, but the assembly continues. Here are the
terminal errors:

BAD LABEL Invalid sequence of
characters were used
as a label. (See
“labels.)

HPRESSION ERROR An invalid expression
was used as an
operand. (See
“expressions’’)

ILLEGAL ADDRESSING MODE One of the operands
used is illegal with the
specified Z-80
instruction.

ILLEGAL OPCODE Unrecognizable
characters were used
in the opcode
(mnemonic) field.

MISSING INFORMATION Mnemonic or
operands are missing.

24

USING THE ASSEMBLER
N S 5 A S A A OB O R

4. Warnings. A probable error occurred, but the assembler will generate object
for the offending line anyway. The code may not be what the programmer
intended. Warning messages are:

BRANCH OUT OF RANGE Relative branch
instruction outside of
the range — 126 to
+129 bytes.
Instruction is
assembled to branch
to itself.

FIELD OVERFLOMW An operand (number
or expression) is out
of range for the
specified instruction.
The operand is set
equal to zero.

MULTIPALLY DEFINED SYMBOL A label has been used
to identify two different
places or represent
two different values.
All but the first
definition will be

ignored.

MULTIPLE DEFINITION A duplicate operand is
used.

NO END STATEMENT No end statement was
found.

UNDEFINED SYMBOL The operand field

contains a symbol
which has not been
defined. A value of 0
is used for this
symbol.

Assembly Language

In the first part of Section 4, we discussed the use of the assemble command. In
this part, we’ll discuss Assembly as a programming language.

An assembly program is made up of source statements. Each source statement
consists of up to four fields. A “*field’” is a range of columns on the display.
We’ll agree to consider column 1 to be the first column of source text. Column 1

25

SERIES | EDITOR/ASSEMBLER
D T o L T e e

is the first column after a space that follows the line number. Source statements
are written using the 1 (insert) command.

Field Column Range
Label 1-6
Mnemonic 9-15
Operand(s) 17-31
Comment May begin anywhere but must be
preceeded by a semi-colon (;).

Labels are used to identify individual source statements. A label may be from
one to six characters. It must start with an alphabetical character. For example:

MOVE
LOOP
LOOP1
CLS
T1

are all valid labels. Labels must start in column 1.
Mnemonics are the abbreviations used to represent z-80 operations, for example:

LD Load
DEC Decrement
RET Return

Mnemonics are also called ‘‘operation codes’’ or ‘‘opcodes.’”” Mnemonics must
start in column 9.

Operands are the values used by certain assembler statements. An operand may
be a z-80 register or VO port, or a one- or two-byte value. For example:

LD A3

tells the z-80 to load into register A the number 3. *°A”" and *‘3" are operands.
Symbols may be used in place of actual numbers. For example:

LD HL W IDEO

tells the z-80 to load into register HL the value for VIDEO (defined elsewhere in the
program). The first operand must start in column 17.

Comments document the program. They are ignored by the assembler. A
comment may begin in any column of a source statement, subject to the
following limitations: All comments start with a semi-colon, which tells the
assembler to ignore the rest of the line.

When you type in a source program, use a tab ((#) key) to separate the fields,
not spaces. This method is faster and saves memory. Furthermore, the tab
settings correspond to the first columns in each field.

26

USING THE ASSEMBLER

Example:

no100 i THIS IS A SAMPLE PROGRAM

pe110 3

o0120 sLABEL MNEM., OPERAND(S) COMMENT

20130 ORG 32700 iFOR 16K MACHINES

00142 BEGIN LD HL »3C0@H s (HL)=VIDEQ RAM)

0150 LD Ay i*’

00160 LD (HL) +A sWRITE ASTERISK TO VIDEOD
00170 RET JRETURN TO CALLER

o0180 END JEND OF SOURCE PROGRAM

Lines 100-120 are comments. Lines 130-170 consists of assembly-language
statements followed in most cases by comments.

There should be one tab character at the end of each field. Spaces (entered via
SPACEBAR) should only be used inside comments and inside character constants.

Assembler Statements

There are three kinds of assembler statements:

1.

Pseudo Operations. Sometimes called ‘‘pseudo ops,’ these statements are not
translated into z-80 object code. They control various functions of the
assembler itself, such as defining labels, reserving memory, and setting the
programs origination address. Pseudo ops must begin in column 9.

. Commands. These are also directed at the assembler. The Series I Assembler

has two assembler commands, *LIST ON and *LIST OFF (described later). These
commands must begin in column 1.

. z-80 Operations. These consist of a mnemonic (sometimes called an operation

code or ‘‘opcode’’) sometimes followed by one, two or no operands. They
are translated directly into object code. Some z-80 instructions translate into
one byte of object code; others may translate into two, three, or four bytes.
The opcode must begin in column 9. Tabbing one time moves to column 9.

Special Terms and Abbreviations for Operands

RARN OT NN Represents a number. For one-byte numbers, nn is used. For

two-byte numbers, nnnn is used. (Two-byte numbers are
assembled into two’s complement binary values. First comes the
least significant byte (LsB), then the most significant byte
(MsB)). A number may be any of these:

Decimal number

Hexadecimal number nnnnt or nnd. The suffix “‘H’’ indicates
hexadecimal; if the number starts with A-F, prefix a O to it, as
n OFOH.

Octal number: nnnnnQ or nnno. The suffix “‘Q”” or ‘0"’
indicates octal.

27

SERIES | EDITOR/ASSEMBLER
D

Current address, ‘s’ (The address in the program counter will
be used in place of the $).

Character constant: Any character inside single quotes. The
constant is converted into its Asci character code. For example,
‘A’ is converted into 65.

Any numeric expression (see ‘‘Expressions’’).
Pseudo-Operations
ORG nnnn

(Originate) This sets the address reference counter. It determines where
subsequent z-80 code and data will reside in memory. If no ORG statement is
given in your source program, the address reference counter will be set to 0.

ORG should be used before any z-80 instructions or data storage pseudo ops. It
may be repeated. The programs in this manual are OrGed at decimal 32512
(hexadecimal 7F00). All subsequent ORG's are absolute.

symbol EQU nnnn or nn

(Equate) This assigns the value nnnn to the symbol. Each time the symbol is
used as an operand in the source program, the assembler will replace it with
nnnn. The EQU statement may appear anywhere in the program. A particular
symbol may be equated only once.

label DEFL nnnn

(Define label) This assigns a temporary value nnnn to the specified label. The
value may be changed as often as required within the source program.

END nnnn

This indicates the end of a source program. If there are any following lines in
the program, they will be ignored. The address nnnn sets the entry point to the
program. If omitted, the entry to TRSDOS (disk systems) or BASIC (cassette
systems) will be used. For details, see section 5.

[labell] DEFB nn

This defines the contents of the current address to be nn. This pseudo op allows
you to initialize the contents of one-byte storage locations used by the program.
nn may be a one-byte value or a character string enclosed in single-quotes.

[labell] DEFW nnnn

This defines the contents of the current two-byte address to be nnnn. This
pseudo op allows you to initialize the contents of two-byte storage locations
used by the program.

[label] DEFS nn

(Define storage) This reserves nn bytes of memory, starting at the current
address. (The reference address will be incremented by nn before the next

28

USING THE ASSEMBLER

source statement is assembled.) This pseudo op allows you to reserve space for
buffers, parameters, etc.

[label] DEFM string

(Define message) This stores the specified string of characters, beginning at the
current address.

Assembler Commands

The *Li1ST command allows you to suppress parts of a source listing. Error
messages and the offending source statements will still be listed. These
commands are very useful when you are debugging long programs, because the
parts of the program already corrected do not need to be listed. You may also
want to use them to suppress the listing of long tables of data contained in
programs (e.g., DEEM strings).

The asterisk (#) portion of the *LIST ON and *LIST OFF command must be in
column one.

¥ IST OFF

Has no effect on the assembly, but turns off the assembly listing.

* I5T ON

Has no effect on the assembly, but turns the assembly on again (after *LIST OFF).
Using Expressions as Operands

The assembler will accept an expression in place of any numeric operand.
Expressions include symbols, numeric or string constants, and combinations
of these using the arithmetic and logical operators listed below.
+ and — Addition and subtraction. Example:

LD HL »UID+80H

- Negation. Example:
LD HL»VID-1
LD HL+-1 (@ understood)
& Logical AND. Example:
LD A (HL) &@FH
< Shift left or right. This operator shifts a value right or left by a
specified number of bits, in this format:
value < nn

If nn is negative, the value is shifted to the right and zeroes fill on
the left. If nn is positive, the value is shifted to the left and zeroes
fill on the right. Example:

LD AUALCZ

29

SERIES | EDITOR/ASSEMBLER
T O S

Shifts the VAL two bits to the left and fills with zeroes on the
right.

The Z-80 Instruction Set

Section 6 is a full z-80 instruction set. The z-80 registers and flags available for
the programmer’s use and a description of the z-80 architecture is in Appendix F.

30

SAMPLE PROGRAMMING SESSION

Part Five:

Sample Programming Session

In this section, we’ll take you step by step through the Series I Editor/
Assembler. Our goal will be to create a machine-language subroutine that may
be called from a BASIC program or the disk operating system of your computer.

The machine-language we’ll present is simple but useful. Given a source
address, a destination address, and a length-value, it will copy a block of
memory into another area of memory. Doing this with normal BASIC statements
is slow. Doing this with machine-language is almost instantaneous.

Creating the Source Program

Start the Editor/Assembler as explained in Section 2. Then type I to get
into the line insertion mode. Now type in the following program, pressing

at the end of each line. (Remember to use TAB to space from the end of
one field to the start of the next field.)

PB10@ 5 SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA
eR11@ i ON ENTRY s (SRC) SOURCE ADDRESS

PO1Z0 3 (DST) = DESTINATION ADDRESS

o0130 (LEN) = NUMBER OF BYTES TO MOVE

00140 ORG 32512

00152 MOVE LD HL + (SRC) i S0URCE ADDR.
00160 LD DE(DST) i DESTINATION ADDR.
00170 LD BC s (LEN) i LENGTH

00180 LDIR

00190 RET

00200 SRC DEFMW B

00210 DST DEFMW 2

BRZ20 LEN DEFMW o

PR230 END MOVE

31

SERIES | EDITOR/ASSEMBLER
B e e

Press (BREAK) to quit inserting. Then type P #:* (ENTER) to see the entire source
program. If there are any errors, use the edit mode (E command) to correct
the line.

If you have a printer, you may get a hard copy of the text by typing H #:*
(ENTER).

Now we are ready to make a copy of the source program. We’ll call it “*“MOVE.”

Saving/Loading a Source Program (Tape Systems)

Using a blank cassette tape, get the recorder ready to record. Type W MOVE
(ENTER). Press again when you are ready to record. After the tape is
recorded, the Editor/Assembler will return in the command mode (asterisk). It’s
a good idea to make a second tape copy.

Now try reloading the program. Delete the text from memory by typing D #:*
(ENTER). Then rewind the recorder, prepare it to play, and type L MOVE (ENTER).
Press again when the recorder is ready to play. After the program has
been loaded, the Editor will return in the command mode. Now skip to the
paragraph titled, Trial Assembly.

Saving/Loading a Source Program (Disk Systems)

Type W MOVE (ENTER). After the file is written, the Editor/Assembler will return
in the command mode (asterisk). The file will be called MOVE/SRC.

Now try reloading the source program. Delete the text from memory by typing
D #:* (ENTER). Then type L MOVE (ENTER). After the source program has been
loaded, the Editor will return to the command mode, listing text and memory
contents.

Trial Assembly

Now we are ready to see if the program can be assembled without errors. We’ll
use the NO (no output) and WE (wait on errors) switches for this purpose.

The source program should be in memory. Type A NOWE (ENTER). The Editor/
Assembler will put the assembly listing on the screen. If any errors are found,
the listing will be paused. An error message will appear directly above the
offending line. Press any key to continue.

If any assembly errors were found, use the edit mode to correct them, and try
another trial assembly.

If you have a printer, you may request a hard copy of the assembly listing. This
will be preferable to the display listing, since most listings require more than 64
columns per line. To output to the printer, type: A NOLP (ENTER).

Figure I shows the assembly listing generated by our sample program. We’ve
added callouts to identify the various fields in the listing.

32

SAMPLE PROGRAMMING SESSION

Memory Object Line
Loc. Code Number Label Mnemonic Operand(s)
0100 i SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA
0110 i ON ENTRY, (SRC) = SOURCE ADDRESS
pR170 ; (DST) = DESTINATION ADDRESS
0130 ; (LEN) = NUMBER OF BYTES TO MOVE
7F00 0140 ORG 32512
7F00 ZADET7F 0150 MOVE LD HL s (S5RC) i SOURCE ADDR.
7F03 EDSB1@7F 016D LD DE+(DST) i DESTINATION ADDR
7FB7 EDUB1Z7F 00170 LD BC s (LEN) 3 LENGTH
7F 0B EDBO pR180 LDIR
7F@D Co pR190 RET
7FQE] 0200 SRC DEFMW 0
7F10 0000 0210 DST DEFM D
7F12 2000 00220 LEN DEFMW]
7F00 0230 END MOVE
0000 Total Errors
LEN 7F12
DST 7F10
SRC 7FQE
MOUE 7F0D

Symbol Table
Figure 1. Sample Assembly Listing

Here are a few comments on the source program (line references are to column
3 of the listing):

Line 140 sets the origination address of the program. We’ve chosen an address
near the top of memory in a 16K RAM system. If you change this address, be sure
to make the appropriate changes in the BASIC calling program (presented later).

Line 230 ends the program. Since we gave an operand (MOVE), the Editor/
Assembler will store the value of MOVE as the entry address to the program. If
we had omitted an operand here, the entry address to the program would have
been set to address 000oH. (More later.)

Object Code Output

After confirming that the program can be assembled without errors, we are
ready to create the object file on tape or disk. We’ll use an assemble command
that outputs object code only.

33

SERIES | EDITOR/ASSEMBLER

Tape Systems

Using a blank tape, prepare the recorder to record. Type A MOVE;NL +NS (ENTER).
Press (ENTER) again when ready. The Editor/Assembler will write out the object
tape. It’s a good idea to repeat this process to get a second tape copy.

Disk Systems

Type A MOVE sNL sNS (ENTER). The Editor/Assembler will create an object file
named MOVE/CMD.

Running the Sample Program

Our sample program, MOVE, may be executed as a BASIC subroutine or as an
independent program.

First, we’ll try it as a BASIC subroutine.

Tape Systems (Level 1l and Mod III only — will not execute in a
Level I machine)

Start BAsIC and answer the MEMORY SIZE question by typing 32511 (ENTER). This
will keep BASIC from using the area where the subroutine will reside.

Now load the subroutine:

Type sysTEM (ENTER). Prepare the recorder to play the object tape, then type
MOVE (ENTER). After the program has been loaded, the #7 will return. Press

to return to BASIC. Now type in the BASIC program given in Listing #1.
(Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copies will be the
length value.

Disk Systems

Start TRsDOs. Under TRSDOS READY, load the subroutine by typing LOAD
MOVE/CMD.

Start BASIC. Answer the MEMORY SIZE question by typing 32511 (ENTER). This
will keep BAsIC from using the memory where MOVE resides.
Now type in the program given in Listing 2. (Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copied will be the
length value.

34

SAMPLE PROGRAMMING SESSION

Executing a Machine-Language Program Directly

MOVE is a subroutine called from a BASIC program. However, you can also
execute machine-language programs created with the Editor/Assembler.

Disk Systems

Under TRSDOS READY, type in the program name and press (ENTER). The program
will be loaded and executed, starting at the address specified in the END
statement of the original source listing (e.g., line 230 of our sample program).
Don’t use our sample program this way; it was designed to be called from
BASIC only.

Tape Systems (Level Il and Mod 111 BASIC)

Load the program using the SYSTEM command, as explained previously. After
the program has been loaded from tape, the *7 will reappear. Don’t press
(ENTER). Press / instead. The Computer will begin executing the program
at the address specified in the END statement of the original source listing (e.g.,
line 230 of our sample program).

Alternatively, you may type / address (ENTER) to override this entry address.

(Don’t try this with MOVE; that subroutine should only be called from a BAsIC
program like the one we presented.)

Tape Systems (Level I users)

You may load the program using the Level I ‘System Loader’ tape that came
with your EDTASM. This is accomplished by typing CLOAD. A prompt
‘‘CASSETTE READY "’ will appear on the screen. When the tape is ready to load
press (ENTER). Your object program will load at this time. The Computer will
begin executing your program at the address specified in the END statement.

You may write your own ‘‘System Loader’’ and put it at the beginning of each
Level I program. (Refer to Appendix B) Tapes loaded into Level I with the
“‘System Loader’” must be OrRGed above 4500H and be created by EDTASM.

1@ POKE 16526:0: POKE 1B6527,127

20 SRC = 32526

30 DST = 32528

48 LN = 32330

30 CLS

E@ INPUT "SOURCE"3 S

70 INPUT "DESTINATION"3 D

8@ INPUT "LEN"3F L

9@ IF (D<15360) OR (D>16383) THEN 230
180 VL = S: MM = 5RC: GOSUB 190

110 IF (D<15360) OR (D»16383) THEN 230
120 IF D+L > 16384 THEN 240

130 WL = D: MM = DST: GOSUB 190

140 VL = L: MM = LN: GOSUB 190

35

SERIES | EDITOR/ASSEMBLER

150 X = USR(@)

160 IF INKEY$="" THEN 160

170 GOTO 50

180 ‘BREAK NUMBER INTO MSB, LSB

190 MS% = WL/236: LS% = UL - (MSZ * Z56)

200 'PUT DATA INTO MEMORY

210 POKE MM,y LS%: POKE MM+1, MSZ

220 RETURN

230 PRINT "INVALID DESTINATION": STOP

24@ PRINT "DATA BLOCK EXCEEDS END OF VIDEO RAM": STOP

Listing #1.

1@ DEFUSR = &H7F0Q0Q
20 SRC = &H7FQE

30 DST = &H7F10
4@ LN = &H7F1Z
50 CLS

B@ INPUT "SOURCE"3F S

70 INPUT "DESTINATION"3 D

8@ INPUT "LEN"3 L

90 IF (D«<13360) OR (D>16383) THEN Z30
10@ YL = S: MM= SRC: GOSUB 190

118 IF (D<15360) OR (D:>16383) THEN 230
120 IF D+L » 16384 THEN 240

130 YL = D: MM = DST: GOSUB 190

140 VL = L: MM = LN: GOSUB 190

150 X = USR(D)

160 IF INKEY$="" THEN 160

170 GOTO 50

180 ‘BREAK NUMBER INTO MSB, LGSB

190 M8% = WL/256: LS%Z = UL - (MSZ * Z256)
200 ‘PUT DATA INTO MEMORY

210 POKE MM, LS%: POKE MM+1, MSZ

220 RETURN

230 PRINT "INVALID DESTINATION": STOP
240 PRINT "DATA BLOCK EXCEEDS END OF VUIDEO RAM": STOP

Listing #2.

36

THE Z-80 INSTRUCTION SET

Part Six:
The Z-80 Instruction Set

Notation and Other Conventions

This section includes a detailed description of all the z-80 assembly language
instructions. The first line of each of these pages shows the assembly language
opcode mnemonic followed by its operand(s). Some instructions have no
operands at all. Other instructions have one or two operands. Anything which
is capitalized should be copied exactly when you use the editor to write the
assembly language source code. Anything shown in lowercase letters will be
replaced by an appropriate register, number, or label. For example, the first
instruction described in the eight-bit load group is:

LDr,r’

LD is the mnemonic for the Load instruction. If you wish to move the contents
of register H into register A, the actual source code is

LD AH
This should be read as ‘‘load register A with the contents of register H.”’

A detailed explanation of the operand notation is given below, but in general
you should note that single lowercase letters are used for eight-bit numbers or
registers and double lowercase letters are used for 16-bit numbers or registers.
Also note that parentheses around a register pair indicates that the register pair is
to be used as a pointer to a memory location. For example, the instruction INC
HL means that 1 is to be added to the HL register pair. The instruction INC (HL)
means that 1 will be added to a number in memory whose address is found in
register pair HL.

Symbol Specifies one of the registers
r A,B.C,D,E, H,or L.

Symbol Specifies a register pair

qq BC, DE, HL, Or AF

ss BC, DE, HL, Or SP

dd BC, DE, HL, Or SP

PP BC, DE, IX, Or SP

rr BC, DE, IX, Or SP

37

SERIES | EDITOR/ASSEMBLER
PUR R SRR AR e e

Symbol Specifies a number or symbol in the range
n 0 to 255 (one byte)

nn 0 to 65535 (two bytes)

d — 128 to 127 (one byte)

e — 126 to 129 (one byte)

Symbol Specifies any of the following

S r, n, (HL), (IX +d), or (IY +d)

m r, (HL) (IX+d), or (IY +d)

(nn) Specifies the contents of memory location nn
b Specifies an expression in the range (0,7)

cc Specifies the state of the Flags for conditional Jr, Jp, CALL and

RET instructions

Instruction Format Examples With Explanation

Format Example 1

LD r(HL)

Operation: I' (| (HL)

This is the shorthand description of the instruction. The arrow indicates that data
is moved into register r.

When you write the assembly language code, the lowercase r will be replaced
by A,B,C,D,E,Hor L.

Format:
Mnemonic: LD Operands: r,(HL)

Object Code:

The object code for this instruction is one byte long. To figure out the object
code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For
example:

Source Code Object Code
LD A,(HL) 01111110
LD B,(HL) 01000110
LD C,(HL) 01001110

38

THE Z-80 INSTRUCTION SET

This instruction uses two machine (M) cycles. The first machine cycle consists
of four timing (T) states and the second machine cycle consists of three T states
for a total of seven T states. In the TRS-80 one T state takes .5636714
microseconds because the clock speed is 1.774038 MHz, for Model I, 4 MHz
for Model II'and 2.02752 MHz for Model I1I. The execution time (E.T.), in
microseconds, is calculated for the TRS-80. (One microsecond is 10~ ¢ seconds
or 1/1,000,000 of a second.)

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75
Condition Bits Affected: None

Example:

If register pair HL contains the number 75SA1H, and memory address 75 A1H
contains the byte S8H, the execution of
LD C, (HL)

will result in 58H in register C.

Format Example 2

JP cc,nn
Operation: IF cCc TRUE, PC {nn

The jump is made only if the condition cc is true. The arrow indicates that the
number nn is moved into the program counter PC. This will cause the program
to jump to address nn.

When you write the assembly language code, cc will be replaced by one of the
following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number
from O to 65535 or a label.

39

SERIES | EDITOR/ASSEMBLER
B R P R S e e

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

T | T I T ! T
I 1 cc]cc‘cclo 1 0
|

Note: The first n operand in this assembled object code is the low order byte of
a two-byte memory address.

The object code for this instruction is three bytes long. To figure out the object
code, replace bits 3, 4 and 5 of the first byte with the appropriate number from
the table. The second two bytes of the object code are the address being jumped
to. For example:

Source Code Object Code

JP NZ, OFF00H 11000010 C2H
00000000 0OH
11111111 FFH
JP M, 1002H 11111010 FAH
00000010 02H
00010000 10H

Note that the low order, or right hand byte, of the address comes first in the
object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. Condition
cc is programmed as one of eight status bits which correspond to condition bits
in the Flag Register (register F). These eight status bits are defined in the table
below which also specifies the corresponding cc bit fields in the assembled
object code.

The Relevant Flag column shows the value the flag must have if the jump is to
occur.

40

THE Z-80 INSTRUCTION SET
A A S A

Relevant
cc Condition Flag
000 NZ non zero Z 0
001 Z zero Z =1
010 NC no carry cC =0
011 C carry cC =1
100 PO parity odd or no overflow P/V =10
101 PE parity even or overflow P/V =1
110 P sign positive S =20
111 M sign negative S =1

M cycles: 3 T states: 10(4,3,3) 4 MHz ET.:2.50
Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are O3H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the
CPU will fetch from address 1520H the byte O3H. In other words, program
execution jumps to the instruction at 1520H.

Format Example 3

CPIR

Operation: A— (HL), HLJHL +1, BC¢BC — 1

The shorthand description indicates that three different things are happening:
1. BC is decremented
2. HL is incremented

3. A byte in memory is subtracted from the A register (but the results are not
saved).

Format:

Mnemonic: CPIR Operands:

41

SERIES | EDITOR/ASSEMBLER

Object Code:
T T T T T 1
1 1 1 O 1 1 0 1 ED
[N N N N B N
T T T T T 1
1 0 1 1 0O O 0 1 Bl
I R R N R

The assembly language instruction has no operands.
The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. The HL is incremented and the Byte Counter (register

pair BC) is decremented. If decrementing causes the BC to go to zero or if

A =(HL), the instruction is terminated. If BC is not zero and A # (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC#0 and A+ (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz ET.: 5.25
For BC=0 or A=(HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

The total execution time of this instruction depends on how long it takes to find
the byte being searched for and the length of the block being searched. If the
instruction loops three times before BC=0 or A= (HL), then there will be 58
(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Set if BC becomes zero; reset otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte
Counter contains @007H, and memory locations have these contents:

(1111H) : 52H
(1112H) : 00H
(1113H) : F3H

42

THE Z-80 INSTRUCTION SET

then after the execution of
CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter
will be 0004H. Since BC # 0, the P/V flag is still set. This means that it did not
search through the whole block before the instruction stopped. Since a match
was found, the Z flag is set.

The CPIR instruction will affect five of the six condition codes.

43

THE Z-80 INSTRUCTION SET
e e e

Z-80 Instruction Set

Table of Contents

8BitLoad Group 47
16 Bit Load Group 65
Exchange, Block Transfer

and Search Groupt 87
8 Bit Arithmetic and Logical Group 105
General Purpose Arithmetic

and CPU Control Groups 135
16 Bit Arithmetic Group 141
Rotate and Shift Group 151
Bit Set, Reset

and Test Group 177
Jump Group 189
Call and Return Group 201
Input and Output Group 211

45

8 BIT LOAD GROUP

8 Bit Load Group

LD ILr , LoaD

Operation: I {1’

Format:

Mnemonic: LD Operands: 1, 1’

Object Code:

Description:

The contents of any register r’ are loaded into any other register r. Note: r, r’
identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in
the object code:

Register r,r'
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4MHzET.: 1.0
Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the
instruction

LD H,E

would result in both registers containing 10H.

47

SERIES | EDITOR/ASSEMBLER

LD rn

Operation: N

Format:

Mnemonic: LD Operands: r, n

Object Code:

Description:

LoaD

The eight-bit integer n is loaded into any register r, where r identifies register A,

B, C, D, E, Hor L, assembled as follows in the object code:

Register

CIImoOOQw
Il

M cycles: 2

Condition Bits Affected: None

Example 1:

After the execution of

LD E,A5H

the contents of register E will be ASH.

Example 2:

After the execution of

LD A0

register A will contain zero.

48

r

111
000
001
010
011
100
101

T states: 7(4,3)

4MHz ET.: 1.75

8 BIT LOAD GROUP

LD g (H L) LoaD
Operation: I (HL)

Format:

Mnemonic: LD Operands: r, (HL)

Object Code:

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r

111
000
001
010
011
100
101

M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75

CITmOQw >
([T (I

i

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)
will result in 58H in register C.

LD l’,('X + d) LoaD

Operation: I ((IX +d)

Format:

Mnemonic: LD Operands: r, (IX +d)

49

SERIES | EDITOR/ASSEMBLER

Object Code:

1 1 0 1t 1 1 0 1| DD

Description:

The operand (IX + d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r, where r identifies register A, B,
C, D, E, Hor L, assembled as follows in the object code:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75
Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction
LD B,(IX+19H)
will cause the calculation of the sum 25AFH + 19H, which points to memory

location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in
memory this program will load the first four bytes of the table into registers A,
B, Cand D.

LD IX, TABL ; IX points to the table
LD A, (IX+0) ; Load first byte

LD B, IX+1) ; Load second byte
LD C,(IX+2) ; Load third byte

LD D, (IX+3) ; Load fourth byte

50

8 BIT LOAD GROUP

LD r(IY +d) Loab

Operation: I ((IY +d)

Format:

Mnemonic: LD Operands: r, (IY +d)

Object Code:

I I I I I I I

1 11 1 1 1 O 1| FD
[N Y NN N N S

I I I I I T T

Description:

The operand (1Y + d) (the contents of the Index Register Y summed with a
two’s complement displacement integer d) is loaded into register r, where r
identifies register A, B, C, D, E, H, or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75
Condition Bits Affected: None

Example:
If the Index Register 1Y contains the number 25AFH, the instruction
LD B,(IY + I9H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

51

SERIES | EDITOR/ASSEMBLER

LD (H L),r LoaD

Operation: (HL) ¢r

Format:
Mnemonic: LD Operands: (HL), r

Object Code:

Description:

The contents of register r are loaded into the memory location specified by the
contents of the HL register pair. The symbol r identifies register A, B, C, D, E,
H or L, assembled as follows in the object code:

Register r

111
000
001
010
011
100
101

T states: 7(4,3) 4MHz ET.: 1.75

CIImoOQw >
[| | B T |

=
S)
<
o
a
w
S}

Condition Bits Affected: None

Example:

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LD (HL),B
memory address 2146H will also contain 29H.

LD (lX + d),r LoaD

Operation: (IX +d){r

Format:

Mnemonic: LD Operands: (IX+d), r

52

8 BIT LOAD GROUP
R

Object Code:
T T T T T 1

| | | | I I |

I I | I I I I

Description:

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, a two’s complement displacement
integer. The symbol r identifies register A, B, C, D, E, H or L, assembled as
follows in the object code:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75
Condition Bits Affected: None

Example:

If the C register contains the byte 1CH, and the Index Register IX contains
3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into memory location
3106H.

LD (IY+d),r LoaD

Operation: (IY+d) @r

Format:

Mnemonic: LD Operands: (IY+d), r

53

SERIES | EDITOR/ASSEMBLER

Object Code:

I I I I I I I

1 1 1 1 1 1 O 1| FD
I I I Y B E

I T I I I I I

Description:

The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register I'Y and d, a two’s complement
displacement integer. The symbol r is specified according to the following table.

Register r
A 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3.,5,3) 4 MHz E.T.: 4.75
Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index Register I'Y contains
2A11H, then the instruction

LD (IY+4H),C

will perform the sum 2A11H + 4H, and will load 48H into memory location
2A15.

LD (HL),n LoaD

Operation: (HL) {n

Format:

Mnemonic: LD Operands: (HL), n

54

8 BIT LOAD GROUP

Object Code:

Description:

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4MHz ET.: 2.50
Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction
LD (HL),28H
will result in the memory location 4444H containing the byte 28H.

LD (IX+d),n Load

Operation: (IX+d){n

Format:

Mnemonic: LD Operands: (IX+d), n

Object Code:

I I I I I I I

1 1 0 1 1 1 0 1| DD
[N S SN N N

| f T f I I I

55

SERIES | EDITOR/ASSEMBLER

Description:

The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two’s complement displacement
operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75
Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction
LD (IX+5H),5AH

would result in the byte SAH in the memory address 219FH.
(219FH=219AH + 5H.)

LD (|Y+ d),n LoaD

Operation: (IY+d)¢n

Format:
Mnemonic: LD Operands: (IY+d), n

Object Code:
T T T T T 1
11 1 1 1 1 0 1 FD
A S W S N S
1 T T T T 1
o 0 1 1 0 1 1 O 36
[A SR NN B S

Description:

Integer n is loaded into the memory location specified by the contents of the
Index Register summed with a two’s complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.: 4.75

Condition Bits Affected: None

56

8 BIT LOAD GROUP

Example:

If the Index Register ['Y contains the number A940H, the instruction
LD ((IY+10H),97H
would result in byte 97H in memory location A950H.

LD A,(BC) LoaD

Operation: A ((BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:
T T T T T 1
0o 0 o 01 0 1 O 0A
RN R N N B B
Description:

The contents of the memory location specified by the contents of the BC register
pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75
Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and memory address 4747H
contains the byte 12H, then the instruction

LD A,BC)
will result in byte 12H in register A.

LD A,(DE) LoaD

Operation: A { (DE)

Format:

Mnemonic: LD Operands: A, (DE)

57

SERIES | EDITOR/ASSEMBLER

Object Code:
T l I I I T T

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75
Condition Bits Affected: None

Example:

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,(DE)
will result in byte 22H in register A.

LD A,(nn) LoaD

Operation: A <] (nn)

Format:

Mnemonic: LD Operands: A, (nn)

Object Code:
T T T T T 1
o o1 1 1 O 1 O 3A
S N N N T S
1 T 1T 1 T 1
n n n n n n n n
[R O O
T T T T T 1
n n n n n n n n
A N S T R B
Description:

The contents of the memory location specified by the operands nn are loaded
into the Accumulator. The first n operand is the low order byte of a two-byte
memory address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

58

8 BIT LOAD GROUP
== == ==

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction
LD A,(8832H)
byte 04H will be in the Accumulator.

LD (BC),A LoaD

Operation: (BC) 0A

Format:

Mnemonic: LD Operands: (BC), A

Object Code:
T T T T T 1
0|0|O|01010|110 02

Description:

The contents of the Accumulator are loaded into the memory location specified
by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75
Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair contains 1212H the
instruction

LD (BO),A
will result in 7AH being in memory location 1212H.

LD (DE),A LoaD

Operation: (DE) ¢ A

Format:

Mnemonic: LD Operands: (DE), A

59

SERIES | EDITOR/ASSEMBLER

Object Code:

o 0 01 0 0 1 0 12

Description:

The contents of the Accumulator are loaded into the memory location specified
by the DE register pair.

M cycles: 2 T states: 7(4,3) 4 MHzET.: 1.75
Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
AOQH, the instruction

LD (DE),A
will result in AQH being in memory location 1128H.

LD (nn),A LoaD

Operation: (NN) ¢A

Format:
Mnemonic: LD Operands: (nn), A

Object Code:

Description:

The contents of the Accumulator are loaded into the memory address specified
by the operands nn. The first n operand in the assembled object code above is
the low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4MHz ET.:3.25

60

8 BIT LOAD GROUP
B L i A M B e Ve e e

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of
LD (3141H),A
D7H will be in memory location 3141H.

LD A,I LoaD

Operation: A {1

Format:

Mnemonic: LD Operands: A, |

Object Code:

1 11 0 1 1 O 1| ED

o 1 o0 1 o0 1 1 1| 57

Description:
The contents of the Interrupt Vector Register I are loaded into the Accumulator.
M cycles: 2 T states: 9(4,5) 4 MHz ET.: 2.25

Condition Bits Affected:

S: Set if [-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag
will contain a 0.
Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of
LD Al
the accumulator will also contain 4AH.

61

SERIES | EDITOR/ASSEMBLER

LD A, R LoaD

Operation: AR

Format:

Mnemonic: LD Operands: A, R

Object Code:
I I T I I I I
1 1 1. 0 1 1 0 1 ED
L
I] T I I T I
o 1 o 1 1 1 1 1 SF
I I R R N
Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz ET.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of
LD AR
the Accumulator will also contain 4AH.

LD |,A LoaD

Operation: | A

Format:

Mnemonic: LD Operands: I, A

62

8 BIT LOAD GROUP

T 1T 1T 1T T T 1
1 1 1 0 1 1 0 1 ED
[I O O Y |
1T 1T 1T 1T 1T 1
o 1 0 0 O 1 1 1 47
Lo
Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector
Register, 1.

M cycles: 2 T states: 9(4,5) 4 MHz ET.: 2.25
Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction
LD LA
the Interrupt Vector Register will also contain 81H.

LD R,A LoaD

Operation: R QA

Format:

Mnemonic: LD Operands: R, A

Object Code:

1 1 1 0 1 1 O 1| ED

Description:
The contents of the Accumulator are loaded into the Memory Refresh register R.

M cycles: 2 T states: 9(4,5) 4 MHz ET.: 2.25

Condition Bits Affected: None

63

SERIES | EDITOR/ASSEMBLER
e R R e e e e

Example:

If the Accumulator contains the number B4H, after the instruction
LD R,A
the Memory Refresh Register will also contain B4H.

64

16 BIT LOAD GROUP

16 Bit Load Group
LD dd,nn

Operation: dd {nn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

T I I I I I I

0 06 d d 0 0 0 1
R N R N S R

T f f T I f I

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3.3) 4 MHz ET.: 2.50
Condition Bits Affected: None

Example:

After the execution of
LD HL,5000H
the contents of the HL register pair will be 5000H.

LoaD

65

SERIES | EDITOR/ASSEMBLER

After the execution of
LD BC,2501H
the BC register will contain 2501H.

LD |X,nn LoaD

Operation: IX{ NN

Format:

Mnemonic: LD Operands: IX, nn

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
[I R N B B
T T T T T 1
0O 01 0 0 O 0 1 21
Lo

Description:

Integer nn is loaded into the Index Register IX. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz ET.: 3.50
Condition Bits Affected: None

Example:

After the instruction
LD IX,45A2H
the Index Register will contain integer 45A2H.

66

16 BIT LOAD GROUP

LD IY, nn LoaD

Operation: 1Y nn

Format:

Mnemonic: LD Operands: 1Y, nn

Object Code:
T T T T T 1
1 1 1 1 1 1 0 1 FD
[Y N N S B
T T 1T T T 1
O 01 0 0 0 0 1 21

Description:

Integer nn is loaded into the Index Register I'Y. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz ET.: 3.50
Condition Bits Affected: None

Example:

After the instruction:
LD 1Y,7733H
the Index Register I'Y will contain the integer 7733H.

LD HL,(nn) LoaD

Operation: H{(nn+ 1), L{(nn)

Format:

Mnemonic: LD Operands: HL, (nn)

67

SERIES | EDITOR/ASSEMBLER

Object Code:

I I I I I I I

0o 0 1 0 1 0 1 O 2A
I SN SR SR B N

I I I I I I I

1 | | | | | |

I I I I I I |

| | | | | | |

Description:

The contents of memory address nn are loaded into the low order portion of
register pair HL (register L), and the contents of the next highest memory
address (nn+ 1) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00
Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains A1H, after the
instruction

LD HL,(4545H)
the HL register pair will contain A137H.

LD dd,(nn) LoaD

Operation: ddy ¢ (nn + 1), dd_ ¢(nn)

Format:
Mnemonic: LD Operands: dd, (nn)

Object Code:

I I I I I [I

1 11 0 1 1 O 1| ED
AR U R O R N

I I I I T f I

68

16 BIT LOAD GROUP
RN SR R R S O SN

Description:

The contents of address nn are loaded into the low order portion of register pair
dd, and the contents of the next highest memory address (nn + 1) are loaded
into the high order portion of dd. Register pair dd defines BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above is the low order byte of
(nn).

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz ET.:5.00
Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the
instruction

LD BC,(2130H)
the BC register pair will contain 7865H.

Example 2:

If address FFFE contains 01H and address FFFF contains 02H, then after the
instruction

LD SP,(0FFFEH)
the SP will contain 0201H.

LD IX,(nn) LoaD

Operation: IXy ¢ (nn+ 1), IX_ ¢(nn)

Format:

Mnemonic: LD Operands: 1X, (nn)

69

SERIES | EDITOR/ASSEMBLER
B

Object Code:

Description:

The contents of the address nn are loaded into the low order portion of Index
Register X, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IX. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4.4,3,3.,3.3) 4 MHz ET.: 5.00
Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the
instruction

LD IX,(6066H)
the Index Register IX will contain DA92H.

LD IY, (nn) LoaD

Operation: 1Yy (nn+ 1), IY_ {(nn)

Format:

Mnemonic: LD Operands: 1Y, (nn)

70

16 BIT LOAD GROUP

Object Code:
T T T T T T 1
1 1 1 1 1 1 0 1 FD
[Y R NN S B
T T T T T 1
O 010 1 O 1 o0 2A

Description:

The contents of address nn are loaded into the low order portion of Index
Register Y, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of 1Y. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00
Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the
instruction

LD 1Y,(6666H)
the Index Register I'Y will contain DA92H.

LD (nn),HL LoaD

Operation: (NN + 1) ¢H, (nn) ¢L

Format:

Mnemonic: LD Operands: (nn), HL

71

SERIES | EDITOR/ASSEMBLER
R T P R T o A R o RSB R R

Object Code:

I I I I I T I

0 01 0 0 O 1 O 22
I SR S SR N S

Description:

The contents of the low order portion of register pair HL (register L) are loaded
into memory address nn, and the contents of the high order portion of HL.
(register H) are loaded into the next highest memory address (nn + 1). The first
n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4.,3,3,3,3) 4 MHz ET.: 4.00
Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction
LD (B229H),HL
address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL contains 504AH, then after the instruction

LD (PLACE),HL

the address PLACE will contain 4AH and address PLACE + 1 will contain 50H.
Note: PLACE is a label which must be defined elsewhere in the program.

LD (nn),dd LoaD

Operation: (NN + 1) ¢ddy, (nNn) ¢dd,

Format:

Mnemonic: LD Operands: (nn), dd

72

16 BIT LOAD GROUP
. O 0 S e T

Object Code:

I I I I I I I

1 1 1 0 1 1 O 1| ED
A Y N N N

I I I I I I T

Description:

The low order byte of register pair dd is loaded into memory address (nn); the
upper order byte is loaded into memory address (nn + 1). Register pair dd
defines either BC, DE, HL, or SP, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte of a two
byte memory address.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz ET.: 5.00
Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction
LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in memory
location 1001H.

LD (nn),IX LoaD

Operation: (NN + 1) 41Xy, (Nn) 41X,

Format:

Mnemonic: LD Operands: (nn), [X

73

SERIES | EDITOR/ASSEMBLER
e X S —

Object Code:
T T T T T 1
15110|1|1|1|011 DD
T T T T T 1
0 0 1.0 0 0 1 O 22

Description:

The low order byte in Index Register IX is loaded into memory address nn; the
upper order byte is loaded into the next highest address (nn + 1). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz ET.: 5.00
Condition Bits Affected: None

Example:

If the Index Register IX contains SA30H, after the instruction
LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will
contain SAH.

LD (nn),IY LoaD

Operation: (NN + 1) 41Yy, (Nn) Q1Y,

Format:

Mnemonic: LD Operands: (nn), [Y

74

16 BIT LOAD GROUP

Object Code:
T T 1T T T 1
1 1 1 1 1 1 0 1 FD
Ll
T T T T T 1
O 0o 1 0 0 O 1 o0 22

Description:

The low order byte in Index Register I'Y is loaded into memory address nn; the
upper order byte is loaded into memory location (nn + 1). The first n operand in
the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz ET.: 5.00
Condition Bits Affected: None

Example:

If the Index Register 1Y contains 4174H after the instruction
LD 8838H,IY

memory location 8838H will contain number 74H and memory location 8839H
will contain 41H.

LD SPHL LoaD

Operation: SPGHL

Format:
Mnemonic: LD Operands: SP, HL

Object Code:

1 1 1 1 1 0 O 1| F9

Description:

The contents of the register pair HL are loaded into the Stack Pointer SP.

75

SERIES | EDITOR/ASSEMBLER
B D s o6 S S WSSl

M cycles: 1 T states: 6 4 MHz ET.: 1.50
Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction
LD SPHL
the Stack Pointer will also contain 442EH.

LD SPIX LoaD

Operation: SP alIXx

Format:

Mnemonic: LD Operands: SP, IX

Object Code:
1 T 1T T T 1
1 1 0 1 1 1 0 1 DD
N S R N B
I L
1 1 1 1 1 0 0 1 F9
[S T R R
Description:

The two-byte contents of Index Register IX are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50
Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction
LD SP,IX
the contents of the Stack Pointer will also be 98DAH.

76

16 BIT LOAD GROUP

LD SPIY LoaD

Operation: SP { Y

Format:

Mnemonic: LD Operands: SP, IY

Object Code:
T T T T T 1
1 1 1 1 1 1 0 1 FD
Lo
T T T T T 1
1 1t 1 1 1 0 0 1 F9
[I H R R N
Description:

The two byte contents of Index Register 1Y are loaded into the Stack Pointer SP.
M cycles: 2 T states: 10(4,6) 4 MHz ET.: 2.50

Condition Bits Affected: None

Example:

If Index Register I'Y contains the integer A227H, after the instruction
LD SPIY
the Stack Pointer will also contain A227H.

PUSH qq

Operation: (SP - 2) <]qu, (SP - 1) OQQH

Format:

Mnemeonic: PUSH Operands: qq

Object Code:

77

SERIES | EDITOR/ASSEMBLER
T R A

Description:

The contents of the register pair qq are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current “‘top’” of the Stack. This instruction first decrements the
SP and loads the high order byte of register pair qq into the memory address
now specified by the SP, then decrements the SP again and loads the low order
byte of qq into the memory location corresponding to this new address in the
SP. The operand qq means register pair BC, DE, HL, or AF, assembled as
follows in the object code:

Pair qq
BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 11(5,3,3) 4 MHz ET.: 2.75
Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. In other words the number from
register pair AF is now on the top of the stack, and the stack pointer is pointing
to it.

Before:
Register AF Address Stack
2233 1007 FF

1008 35
Stack Pointer
1007
After: PUSH AF
Register AF Address Stack

2233 1005 33
1006 22
1007 FF
1008 35

Stack Pointer
1005

78

16 BIT LOAD GROUP

PUSH IX

Operation: (SP —2) QIX, (SP —1) ¢1Xy

Format:

Mnemonic: PUSH Operands: 1X

Object Code:
I I I I I I I
1 1. 0 1 1 1 0 1 DD
[S S H
I I I I I I I
1 1. 1 0 O 1 O 1 ES
L
Description:

The contents of the Index Register IX are pushed into the external memory
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the
16-bit address of the current ‘‘top’” of the Stack. This instruction first
decrements the SP and loads the high order byte of IX into the memory address
now specified by the SP, then decrements the SP again and loads the low order
byte into the memory location corresponding to this new address in the SP.

M cycles: 3 T states: 15(4,5,3,3) 4 MHz ET.:3.75
Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from the IX
register pair is now on the top of the stack.

Before:
Register IX Address Stack
2233 1007 FF

1008 35

Stack Pointer
1007

79

SERIES | EDITOR/ASSEMBLER
R O S S

After: PUSH IX

Register IX Address Stack
2233 1005 33
1006 22
1007 FF
1008 35

Stack Pointer
1005

PUSH IY
Operation: (SP —2) ¢lY, (SP —1) ¢1Y,

Format:

Mnemonic: PUSH Operands: 1Y

Object Code:
I I I I T I
I 1 1 1 1 1 0 1 FD
[N S T B N
T T I T T I
1]11110|011|0‘1 ES
Description:

The contents of the Index Register I'Y are pushed into the external memory
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the
16-bit address of the current “‘top”” of the Stack. This instruction first
decrements the SP and loads the high order byte of 1Y into the memory address
now specified by the SP; then decrements the SP again and loads the low order
byte into the memory location corresponding to this new address in the SP.

M cycles: 4 T states: 15(4,5,3,3) 4 MHz ET.: 3.75
Condition Bits Affected: None

Example:

If the Index Register I'Y contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH 1Y

80

16 BIT LOAD GROUP

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from register pair
IY is now on the top of the stack.

Before:
Register 1Y Address
2233 1007

1008

Stack Pointer
1007

After: PUSH 1Y

Register 1Y Address
2233 1005
1006
1007
1008
Stack Pointer

1005

POP qq

Stack

FF
35

Stack

33
22
FF
35

Operation: Qy 4 (SP + 1), aqc { (SP)

Format:

Mnemonic: POP Operands: qq

Object Code:

I I I I

| | |

T T
1 1 g¢q q10|O|O

I

1
z

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit
address of the current “‘top’” of the Stack. This instruction first loads into the
low order portion of qq, the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of qq and the
SP is now incremented again. The operand qq defines register pair BC, DE, HL,
or AF, assembled as follows in the object code:

81

SERIES | EDITOR/ASSEMBLER
e —

Pair r

BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 10(4,3,3) 4MHz ET.: 2.50
Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP HL

will result in register pair HL containing 3355H, and the Stack Pointer
containing 1002H. In other words register pair HL contains the number which
was on the top of the stack, and the stack pointer is pointing to the current top of
the stack.

Before:
Register HL Address Stack
2233 1000 55
1001 33
1002 A4
1003 62
Stack Pointer
1000

After: POP HL
Register HL Address Stack

3355 1002 A4
1003 62
Stack Pointer
1002

POP IX

Operation: |Xy ¢ (SP + 1), IX ¢ (SP)

Format:
Mnemonic: POP Operands: 1X

82

16 BIT LOAD GROUP
L P R TS O EE S

Object Code:
1T T T T T 1
1 1.0 1 1 1 0 1 DD
I N R O B N
T T T T T 1
1 1 1.0 0 0 0 1 El
L0
Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IX. The Stack Pointer (SP) register pair holds the
16-bit address of the current ‘‘top’” of the Stack. This instruction first loads into
the low order portion of IX the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IX. The SP
is now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz ET.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains SSH, and
location 1001H contains 33H, the instruction
POP IX

will result in the Index Register IX containing 3355H, and the Stack Pointer
containing 1002H. Register pair IX contains the number which used to be on the
top of the stack.

Before:

Register IX Address Stack

24F9 1000 55
1001 33
1002 A4
1003 62

Stack Pointer
1000

83

SERIES | EDITOR/ASSEMBLER

After: POP IX

Register IX Address Stack

3355 1002 A4
1003 62

Stack Pointer
1002

POP IY

Operation: 1Y, {(SP + 1),1Y ¢ (SP)

Format:
Mnemonic: POP Operands: 1Y

Object Code:

T T 1T T T 1
1 1 1 1 1 1 0 1 FD
[S S N N
T T T T T 1T
1 1 1.0 O O O 1 El
[S N H R B
Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IY. The Stack Pointer (SP) register pair holds the
16-bit address of the current ‘‘top’” of the Stack. This instruction first loads into
the low order portion of 1Y the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of I'Y. The SP
is now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50
Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains S5H, and
location 1001H contains 33H, the instruction

POP 1Y

will result in Index Register ['Y containing 3355H, and the Stack Pointer
containing 1002H. Register pair I'Y contains the number which used to be on the
top of the stack.

84

16 BIT LOAD GROUP

Before:

Register 1Y
24F9

Stack Pointer
1000

After: POP

Register 1Y
3355

Stack Pointer
1002

Address

1000
1001
1002
1003

1Y

Address

1002
1003

Stack

55
33
A4
62

Stack

A4
62

85

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Exchange, Block Transfer
and Search Group

EX D E, H L EXchange

Operation: DE) HL

Format:

Mnemonic: EX Operands: DE, HL

Object Code:

Description:
The two-byte contents of register pairs DE and HL are exchanged.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00
Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H, and the content of the
register pair HL is number 499AH, after the instruction

EX DE,HL

the content of register pair DE will be 499AH and the content of register pair
HL will be 2822H.

EX AF,AF ’ EXchange

Operation: AF a0 AF’

Format:

Mnemonic: EX Operands: AF, AF’

87

SERIES | EDITOR/ASSEMBLER
BN IS T R e e

Object Code:

6 0 0 0 1 0 0 O 08

Description:

The two-byte contents of the register pairs AF and AF' are exchanged.
(Note: register pair AF’ consists of registers A" and F!)

M cycles: 1 T states: 4 4 MHz ET.: 1.00
Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register
pair AF' is number 5944H, after the instruction

EX AF,AF’
the contents of AF will be 5944H, and the contents of AF will be 9900H.

EXX EXchange

operation: (BC) (0 (BC'), (DE) ¢ (DE"), (HL) ap (HL)

Format:

Mnemonic: EXX Operands:

Object Code:

11 0 1 1 0 O 1| D9

Description:

Each two-byte value in register pairs BC, DE, and HL is exchanged with the
two-byte value in BC. DE! and HL. respectively.

M cycles: | T states: 4 4 MHz ET.: 1.00
Condition Bits Affected: None

Example 1:

If the contents of register pairs BC, DE, and HL are the numbers 445AH,
3DA2H, and 8859H, respectively, and the contents of register pairs BC, DE!
and HL' are 0988H, 9300H, and OOE7H, respectively, after the instruction

88

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EXX

the contents of the register pairs will be as follows: BC: 0988H; DE: 9300H;
HL: 00E7H; BC': 445AH; DE": 3DA2H; and HL': 8859H.

Example 2:

If the contents of the registers are as shown:
BC : 1111H

DE : 2222H

HL : 3333H

BC’ . 4444H

DE’ . 5555H

HL' ;. 6666H

Then after an EXX instruction the registers will contain:
BC . 4444H

DE : 5555H

HL : 6666H

BC’ : 1111H

DE’ . 2222H

HL' : 3333H

EX (SP), HL EXchange

Operation: H (D (SP + 1), L {0 (SP)

Format:

Mnemonic: EX Operands: (SP),HL

Object Code:

1 1.1 0 0 O 1 1 E3

Description:

The low order byte contained in register pair HL is exchanged with the contents
of the memory address specified by the contents of register pair SP (Stack
Pointer), and the high order byte of HL is exchanged with the next highest
memory address (SP+1).

M cycles: 5 T states: 19(4,3,4,3.5) 4 MHzET.:4.75

Condition Bits Affected: None

89

SERIES | EDITOR/ASSEMBLER

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the
memory location 8856H contains the byte 11H, and the memory location 8857H
contains the byte 22H, then the instruction

EX (SP),HL

will result in the HL register pair containing number 2211H, memory location
8856H containing the byte 12H, the memory location 8857H containing the byte
70H and the Stack Pointer containing 8856H.

Before:

Register HL Address Stack

7012 8856 11
8857 22
8858
Stack Pointer
8856
After:
Register HL Address Stack
2211 8856 12
8857 70
8858

Stack Pointer
8856

EX (S P), IX EXchange

Operation: |X, (0 (SP + 1), IX_ {0 (SP)

Format:

Mnemonic: EX Operands: (SP), IX

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
[N N N IR B
T 1T T T T T 1
1 1. 1.0 0 0 1 1 E3
L

90

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP
e E R e e e e e

Description:

The low order byte in Index Register IX is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer),
and the high order byte of IX is exchanged with the next highest memory
address (SP+1).

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains 0 100H,
the memory location @100H contains the byte 90H, and memory location @10 1H
contains byte 48H, then the instruction

EX (SP),IX

will result in the IX register pair containing number 4890H, memory location
0100H containing 88H, memory location @101H containing 39H and the Stack
Pointer containing 0100H.

Before:

Register IX Address Stack

3988 0100 90
0101 48
Stack Pointer
0100
After:
Register IX Address Stack
4890 0100 88

0101 39

Stack Pointer
0100

EX (SP), IY EXchange

Operation: IYy (0 (SP + 1), 1Y <0 (SP)

Format:

Mnemonic: EX Operands: (SP), IY

91

SERIES | EDITOR/ASSEMBLER

Object Code:
1 1 T T 1 1
1 1 1 1 1 1 0 1 FD
L0
1 1 T T 1 1
1 1 1 0 0 0 1 1 E3
L
Description:

The low order byte in Index Register 1Y is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer),
and the high order byte of 1Y is exchanged with the next highest memory
address (SP+1).

M cycles: 6 T states: 23(4,4,3,4,3.5) 4 MHzET.:5.75
Condition Bits Affected: None

Example:

If the Index Register I'Y contains 3988H, the SP register pair contains 0100H,
the memory location @100H contains the byte 90H, and memory location
0101H contains byte 48H, then the instruction

EX (SP).IY

will result in the 1Y register pair containing number 4890H, memory location
0100H containing 88H, memory location 0101H containing 39H, and the Stack
Pointer containing 0100H.

Before:
Register 1Y Address Stack
3988 0100 90
0101 48
Stack Pointer
0100
After:
Register 1Y Address Stack
4890 0100 88
0101 39

Stack Pointer
0100

92

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

LD| LoaD & Increment
Operation: (DE) ¢(HL), DE¢GDE +1, HLGHL +1, BC{BC —1

Format:

Mnemonic: LDI Operands:

Object Code:

I I I I I I I
1 1 1 0 1 1 0 1 ED

I S I S M S

I I I [I I T
110111010|010|O AO
Description:

A byte of data is transferred from the memory location addressed by the
contents of the HL register pair to the memory location addressed by the
contents of the DE register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC — 1 #0; reset otherwise
N: Reset

C: Not affected

Example 1:

If the HL register pair contains 1111H, memory location 1111H contains the byte
88H, the DE register pair contains 2222H, the memory location 2222H contains
byte 66H, and the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and memory addresses:

HL . 1112H
(1111H) : &8H

DE . 2223H
(2222H) : 88H
BC . 6H

93

SERIES | EDITOR/ASSEMBLER
e mE e s ——

and the condition Bits will be:

L | Jofijof |
S Z HPV N C

Example 2:

If the contents of registers and memory are as shown:
HL . 7C00H

(7C00) : FFH

DE . 3C00H

(3C00) : O00H

BC : 1H

Then after an LDI instruction the registers and memory will contain the
following:

HL . 7COIH

(7C00) : FFH

DE : 3COIH

(3C00) : FFH

BC OH

and the condition bits will be:

L[lofofo] |

S Z H PV N C

Example 3:

The following program will move 80 consecutive bytes from BUF1 to BUF2:
LD HL, BUF1

LD DE, BUF2

LD BC, 80

LOOP LDI

JP NZ, LOOP

LDIR LoaD Increment & Repeat

Operation: (DE) ¢ (HL), DE ¢DE +1, HLGHL + 1, BC4BC — 1

Format:

Mnemonic: LDIR Operands:

94

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

1 1 1 0 1 1 0 |1 ED
I NN N S B
T T T T T T 1
1 0 1 1 0 0 0 O B0
L
Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the DE register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented. If decrementing causes
the BC to go to zero, the instruction is terminated. If BC is not zero the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero prior to instruction execution, the instruction will loop through
64K bytes. Also, interrupts will be recognized after each data transfer.

For BC #0:

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25
For BC=0:

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Reset

N: Reset

C: Not affected
Example:

If the HL register pair contains 1111H, the DE register pair contains 2222H, the
BC register pair contains ®003H, and memory locations have these contents:

(1111H) : 88H (2222H) : 66H
(1112H) : 36H (2223H) : 59H
(1113H) : AS5H (2224H) : CS5H
then after the execution of

LDIR

95

SERIES | EDITOR/ASSEMBLER
S S G I

the contents of register pairs and memory locations will be:

HL 1114H
DE 2225H
BC 0000H
(1111H) 88H (2222H) 88H
(1112H) 36H (2223H) 36H
(1113H) ASH (2224H) ASH

and the H, P/V, and N flags are all zero.

LDD

LoaD Decrement

Operation: (DE) ¢(HL), DE¢GDE -1, HLJHL -1, BC¢BC — 1

Format:
Mnemonic: LDD Operands:
Object Code:
T T T T T 1
1 1 1 0 1 1 0 1 ED
L
T T T T T 1
1 0 1 0 1 0 0 O A8
I N R N B
Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these register
pairs, including the BC (Byte Counter) register pair, are decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC — 1 # 0; reset otherwise
N: Reset

C: Not affected

96

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP
B e e o B o S e

Example 1:

If the HL register pair contains 1111H, memory location 1111H contains the byte
88H, the DE register pair contains 2222H, memory location 2222H contains
byte 66H, and the BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and memory addresses:
HL : 1110H

(IT11H) : 88H

DE : 2221H

(2222H) : 88H

BC : 6H

and the condition bits will be:

L[Jelrfo] |
S Z HPV N C

Example 2:

If the contents of registers and memory are as shown:
HL . 7CFFH

(7CFF) . 3CH

DE . 3CFFH

(3CFF) : O00H

BC : IH

Then after a LDD instruction the registers and memory will contain the
following:

HL . 7CFEH

(7CFF) . 3CH

DE . 3CFEH

(3CFF) : 3CH

BC : OH

and the condition bits will be:

| | Jofolo] |

S Z H PV N C

LDDR LoaD Decrement & Repeat
Operation: (DE) ¢ (HL), DE¢DE —1, HLHL -1, BC{BC — 1

Format:

Mnemonic: LDDR Operands:

97

SERIES | EDITOR/ASSEMBLER
L

Object Code:

T T T T T 1

11 1 0 1 1 0 1 ED
[S N T A I

T 1T 1T T T 1
110|lxl|l;0|010 BS
Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these registers
as well as the BC (Byte Counter) are decremented. If decrementing causes the
BC to go to zero, the instruction is terminated. If BC is not zero, the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero prior to instruction execution, the instruction will loop through
64K bytes. Also, interrupts will be recognized after each data transfer.

For BC#0:

M cycles: 5 T states: 21(4,4,3.5,5) 4 MHz ET.: 5.25
For BC=0:

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Reset

N: Reset

C: Not affected
Example:

If the HL register pair contains 1114H, the DE register pair contains 2225H, the
BC register pair contains 0003H, and memory locations have these contents:

(I114H) : AS5H (2225H) : CSH
(1113H) : 36H (2224H) : 59H
(1112H) : 88H (2223H) : 66H

then after the execution of
LDDR

98

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP
e R e e e e e e

the contents of register pairs and memory locations will be:

HL : 1111H
DE . 2222H
BC : 0000H
(1114H) : ASH (2225H) : ASH
(1113H) : 36H (2224H) : 36H
(1112H) : 88H (2223H) : 88H

and the H, P/V, and N flags are all zero.

CP' ComPare & Increment
Operation: A — (HL), HL{HL +1, BC4BC —1

Format:

Mnemonic: CPI Operands:

Object Code:

T I I I I I I
1 1 1 0 1 1 0 1 ED
I N IR S S N
I I I I I I I
1 0 1t 0 0 0 0 1 Al
[R S N N
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. Then HL is incremented and the Byte Counter (register
pair BC) is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise

N: Set

C: Not affected

99

SERIES | EDITOR/ASSEMBLER
S S L 0 3 G e T e PSS SR TR

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH,
the Accumulator contains 3BH, and the Byte Counter contains 000 1H, then after
the execution of

CPI1
the Byte Counter will contain 0000H, the HL register pair will contain 1112H,
the Z flag in the F register will be set, and the P/V flag in the F register will be

reset. There will be no effect on the contents of the Accumulator or address
1111H.

If the contents of memory and registers are as shown

HL . S8AQOH
(8AOOH) : 6DH

A . 75H
BC . SH

Then during the execution of a CPI instruction the Arithmetic and Logic Unit
will do the following subtraction:

Borrow needed here
<

75H = 0111 0101
— 6DH = 0110 1101

8H = 0000 1000

After CPI is executed registers and memory will contain the following:

HL . 8AQIH
(8AQOH) : 6DH

A . 715H
BC . 4H

and the condition bits would be:

(ofofrfrfrft]

S Z H PV N C

result positive o o o o < <« notaffected
match not found always set
borrow from bit 4 BC not zero

Example 3:

The following program is used to verify that the contents of two 80-byte buffers
are identical. Each time a mismatch is found the program calls a subroutine
called ERROR.

100

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

STRT LD HL, BUFI
LD DE, BUF2
LD BC. 80
LOOP LD A, (DE)
CPI
CALL NZ, ERROR
INC DE
IR PO, LOOP
END
CP' R ComPare Increment & Repeat

Operation: A — (HL), HLHL +1, BC(BC —1

Format:

Mnemonic: CPIR Operands:

Object Code:
T T T T T 1
I 1 1 0 1 1 0 1 ED
[N TR N RO T
T T 1T T T 1
1 0 1t 1 0 0 0 1 Bl
R R O N N N
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. The HL is incremented and the Byte Counter (register

pair BC) is decremented. If decrementing causes the BC to go to zero or if

A = (HL), the instruction is terminated. If BC is not zero and A # (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC#0 and A # (HL):

M cycles: 5 T states: 21(4,4,3.5,5) 4 MHz ET.: 5.25
For BC#0 or A=(HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

101

SERIES | EDITOR/ASSEMBLER
O 9 AP s

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator (Register A) contains
F3H, the Byte Counter contains @007H, and memory locations have these
contents:

(1111H) : 52H

(1112H) : 00H
(1113H) : F3H

then after the execution of
CPIR

the contents of register pair HL will be 1114H, and the contents of the Byte
Counter will be 0004H. Since BC # 0, the P/V flag is still set. This means that it
did not search through the whole block before the instruction stopped. Since a
match was found, the Z flag is set.

The following program uses the CPIR instruction to count the number of nulls
(0OH) found in an 80-byte buffer. The count is kept in register E.

STRT LD BC, 80
LD HL, BUFF
LD A, 0
LD E.O
LOOP CPIR
JR NZ, FOO
INC E
FOO JP PE, LOOP
END
CPD ComPare & Decrement

Operation: A — (HL), HLGHL —1, BC¢BC —1

Format:

Mnemonic: CPD Operands:

102

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

I T I I I T
1 1 1 0 1 1 0 1 ED
[N S Y M M B
T f I I f I T
1 0 1 0 1 0 0 1 A9
L
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the Z
condition bit is set. The HL and the Byte Counter (register pair BC) are
decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A =(HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH,
the Accumulator contains 3BH, and the Byte Counter contains Q00 1H, then after
the execution of

CPD

the Byte Counter will contain OQ00H, the HL register pair will contain 1110H,
the Z flag in the F register will be set and the P/V flag in the F register will be
reset. There will be no effect on the contents of the Accumulator or address
1111H.

Since the CPD instruction decrements HL, it is used to search through memory
from high to low addresses. Otherwise it is similar to the CPI instruction.

CPD R ComPare Decrement & Repeat
Operation: A— (HL), HLG HL—-1,BC { BC —1

Format:

Mnemonic: CPDR Operands:

103

SERIES | EDITOR/ASSEMBLER

Object Code:

T i I f I I I
1 1 1 0 1 1 0 1 ED
I NS N T E B
I I I | I I I
1 0 1t 1 1 0 0 1 B9
[T O N BN
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to zero or if A=(HL), the
instruction is terminated. If BC is not zero and A # (HL), the program counter is
decremented by 2 and the instruction is repeated. Note that it BC is set to zero
prior to instruction execution, the instruction will loop through 64K bytes, if no
match is found. Also, interrupts will be recognized after each data comparison.

For BC#0 and A # (HL):

M cycles: 5 T states: 21(4,4,3,5.5) 4 MHz ET.: 5.25
For BC = 0 or A = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL), reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte
Counter contains 0003H, and memory locations have these contents:

(1118H) : 52H
(1117H) : O00H
(1116H) : F3H

then after the execution of
CPDR

the contents of register pair HL will be 1115H, the contents of the Byte Counter
will be 000OH, the P/V flag in the F register will be reset, and the Z flag in the
F register will be set.

104

8 BIT ARITHMETIC AND LOGICAL GROUP

8 Bit Arithmetic and Logical Group
ADD Ar

Operation: AGA +r

Format:

Mnemonic: ADD Operands: A, r

Object Code:

] I [] | I I
1 0 0 0 O r r 1
L | | | | | |

Description:

The contents of register r are added to the contents of the Accumulator, and the
result is stored in the Accumulator. The symbol r identifies the registers A, B,
C, D, E, H or L assembled as follows in the object code:

Register r
A 111
B = 000
Cc = 001
D = 010
E = 011
H = 100
L 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example:

If the contents of the Accumulator are 44H, and the contents of register C are
11H, after the execution of

ADD A,C

105

SERIES | EDITOR/ASSEMBLER

the contents of the Accumulator will be 55H. See Appendix K for more details
of condition bits affected.

ADD An

Operation: AJA+n

Format:

Mnemonic: ADD Operands: A, n

Object Code:

Description:

The integer n is added to the contents of the Accumulator and the results are
stored in the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHzET.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example:

If the contents of the Accumulator are 23H, after the execution of
ADD A,33H

the contents of the Accumulator will be 56H.

106

8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A, (HL)
Operation: A JA+ (HL)

Format:
Mnemonic: ADD Operands: A, (HL)

Object Code:
T T T T T]
110101010111110 86

Description:

The byte at the memory address specified by the contents of the HL register
pair is added to the contents of the Accumulator and the result is stored in the
Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set it overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example:

If the contents of the Accumulator are AQH, and the content of the register
pair HL is 2323H, and memory location 2323H contains byte O8H, after the
execution of

ADD A,(HL)
the Accumulator will contain A8H.

ADD A, (IX+d)

Operation: AQA + (IX+d)

Format:

Mnemonic: ADD Operands: A, (IX+d)

107

SERIES | EDITOR/ASSEMBLER
e U s L T N e

Object Code:

Description:

The contents of the Index Register (register pair 1X) is added to a two’s
complement displacement d to point to an address in memory. The contents of
this address is then added to the contents of the Accumulator and the result is
stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.. 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example:

If the Accumulator contents are 11H, the Index Register IX contains 1000H, and
if the content of memory location 1005H is 22H, after the execution of

ADD A, (IX+5H)
the contents of the Accumulator will be 33H.

ADD A,(IY +d)

Operation: AJA+ (1Y +d)

Format:

Mnemonic: ADD Operands: A, (IY+d)

108

8 BIT ARITHMETIC AND LOGICAL GROUP
T

Object Code:

1 1 1 1 1 1 0 1 FD

Description:

The contents of the Index Register (register pair 1Y) is added to the
displacement d to point to an address in memory. The contents of this address
is then added to the contents of the Accumulator and the result is stored in the
Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example:

If the Accumulator contents are 11H, the Index Register pair I'Y contains 1000H,
and if the content of memory location 1005H is 22H, after the execution of

ADD A,IY+5H)
the contents of the Accumulator will be 33H.

ADC A,S ADd with Carry

Operation: AJA+s+CY

Format:
Mnemonic: ADC Operands: A, s

The s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

109

SERIES | EDITOR/ASSEMBLER
e

Object Code:
I] I] I I]
ADCA,r llOIOlOlllrlrlr
[[] | I I I
ADC A, n 1 1.0 O 1 1 1 O CE
I I | | | | |
I I I I I I [
n n n n n n n n
| | | | [
]] I I I I I
ADC A, (HL) 11010101111!1]0 8E
[I I [] I I
ADC A, (IX+d) 1 1 0 1 1 1 0 1 DD
I N N N N |
[]] I I I I
I 0 0 0 1 1 1 O 8E
N [| | |
1 T T | | T
d d d d d d d d
L1 | | | | L
I T T | I I I
ADC A, (IY+d) 11111(l|1111011 FD
I] I | I I I
1 0 0 O 1 1 1 0 8E
B | | | | |
] I [I I [I
d d d d d d d d
1 | L

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand, along with the Carry Flag (**C’’ in the F register) is added to the
contents of the Accumulator, and the result is stored in the Accumulator.

110

8 BIT ARITHMETIC AND LOGICAL GROUP
L R e e e e e

M 4 MHz

Instruction Cycles T States E.T. in ps
ADCA,r 1 4 1.00
ADC A, n 2 7(4,3) 1.75
ADC A, (HL) 2 7(4,3) 1.75
ADC A, (IX+d) S 19(4,4,3.5.,3) 4.75
ADC A, (IY+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 6666H, and address 6666H contains 10H, after the execution of

ADC A, (HL)
the Accumulator will contain 27H.

Example 2:

If the Carry Flag is set, the Accumulator contains 30H, and register C contains 0
5H, then after the execution of

ADC A, C
the Accumulator will contain 36H.

SUB s SUBtract

Operation: AJA —S

Format:
Mnemonic: SUB Operands: s

The s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

111

SERIES | EDITOR/ASSEMBLER

Object Code:
I] I I I] I

SUBr 1 0 0 1 O r r r
F S T B L
I I I I I I I

SUB n 111|O|1t011|1|0 D6
I I I I I [I
n n n n n n n n
| | | s | | |
I] I] I I I

SUB (HL) 1|0101110!11110 96
[I I] I I I

SUB (IX+d) 1;110|1|1|110:1 DD
I T I I I I I
1 0 01 0 1 1 O 96
! Lo
I I I] T I I
d|d;d|dsd;d|d|d
T I] I I I I

SUB (IY+d) 111111111111011 FD
[I I I | I I
1 0 0 1 0 1 1 O 96
L] | | | 1 |
I T I I T I I
d d d d d d d d
| IR A S R N

r identifies registers A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

Description:

The s operand is subtracted from the contents of the Accumulator, and the result
is stored in the Accumulator.

112

8 BIT ARITHMETIC AND LOGICAL GROUP
T 1 SR SR 5T

M 4 MHz

Instruction Cycles T States E.T. in ps
SUBTr 1 4 1.00
SUB n 2 7(4,3) 1.75
SUB (HL) 2 7(4,3) 1.75
SUB (IX+d) 5 19(4,4,3,5,3) 4.75
SUB (IY+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise
Example:

If the Accumulator contains 29H and register D contains 11H, after the
execution of

SUB D
the Accumulator will contain 18H.

SBC A,S SuBtract with borrow (Carry)
Operation: AQA—s—CY

Format:
Mnemonic: SBC Operands: A, s

The s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the
analogous ADD instructions. These various possible opcode-operand
* combinations are assembled as follows in the object code:

Object Code:
I I] I I T I
SBCA,r 1 0 0 1 1 r r r
L1 AN R B N
I I T I I I I
SBC A, n 1 1.0 1 1 1 1 O DE

113

SERIES | EDITOR/ASSEMBLER

SBC A, (HL) 11010'111|1J110 9E
T T T 1T T 1

SBC A, (IX+d) 1111011|111|0|1 DD
T T T T T 1
1 0 0 1 1 1 1 O 9E

SBC A,(IY +d) 1 1 1 1 1 1 0 1 FD

T T T 1T T 1
d d d d d d d d
N N Y I B T B

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r
A 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

Description:

The s operand, along with the Carry Flag (‘‘C’’ in the F register) is subtracted
from the contents of the Accumulator, and the result is stored in the
Accumulator.

114

8 BIT ARITHMETIC AND LOGICAL GROUP
T A e e

M 4 MHz

Instruction Cycles T States E.T. in ps
SBCA,r 1 4 1.00
SBC A, n 2 7(4,3) 1.75
SBC A, (HL) 2 7(4,3) 1.75
SBC A, (IX+d) 5 19(4,4,3,5,3) 4.75
SBC A, (IY+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 3433H, and address 3433H contains O5H, after the execution of

SBC A,(HL)
the Accumulator will contain 10H.

Example 2:

If the Carry Flag is set, the Accumulator contains 21H and register B contains 0,
then after the execution of

SBC A.,B
the Accumulator contains 20H.

AND s

Operation: AJA o S

Format:
Mnemonic: AND Operands: s

The s operand is any of r, n, (HL), (IX+d) or (IY+d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

115

SERIES | EDITOR/ASSEMBLER

Object Code:
T T T T T 1

AND r 1 0 1 0 O r r r
[NN T N B N |
T T T T T 1

AND n 111111010111110 E6
T T T T T 1
n n n n n n n n
A S O T E B
I I I I T I I

AND (HL) 110|110i0‘1!l‘0 A6
T T T T T 1T

AND (IX+d) 1!1101111111011 DD
T T T T T 1
1 0 1 0 O 1 1 O A6
L
T T T T T 1
d d d d d d d d
[N T T EE |
T T T T T 1

AND (IY+d) 11111|1|1|1|O|1 FD
T T T T T 1
1|O'11010|1|110 A6
T T T T T 1
d d d d d d d d
I S T T B N

r identifies register A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r
A 111
B = 000
cC = 001
D = 010
E = 011
H = 100
L 101

116

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical AND operation, Bit by Bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is stored
in the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in ps

AND r 1 4 1.00
AND n 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX+d) 5 19(4,4,3,5,3) 4.75
AND (IX +d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set

P/V: Set if parity even; reset otherwise
N: Reset
C: Reset
Table of AND Values:

IF Then

A B A (After)

0 0 0

0 1 0

1 0 0

1 1 1
Example:

If the B register contains 7BH (01111011) and the Accumulator contains C3H
(11000011), after the execution of

AND B
the Accumulator will contain 43H (01000011).

ORs

Operation: AJA < S

Format:

Mnemonic: OR Operands: s

117

SERIES | EDITOR/ASSEMBLER
S O D O S S

The s operand is any of r, n, (HL), (IX+d), or (IY+d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:
T T T T T 1
ORT l|011!l|0|rlrlr
T T T T T 1
ORn l|1f111|0|11110 F6
T T T T T 1
n n n n n n n n
R R S Y B
T T T T T 1T
OR (HL) lloxllllOllllJO B6
T T T T T 1
OR (IX+d) llllollllllloll DD
T T T T T
1 0 1 1 0 1 1 0O B6
L
T T T T T
d d d d d d d d
A S T S B
T T T T T
OR (IY+d) 1 1 1 1 1 1 0 1 FD
N NN N T B B
T T T T T
1 0 1 1 O 1 1 0 B6
[N T SO NN S |
T T T T T 1
d d d d d d d d
R S R T R B

r identifies register A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r

= 111
000
001
010
011
100
101

Il

If

Il

Il

CEmoaw
If

I

118

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical OR operation, Bit by Bit, is performed between the byte specified by
the s operand and the byte contained in the Accumulator; the result is stored in
the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in ps

OR T~ | 4 1.00
OR n 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (IY+d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Reset

Table of OR Values:

IF Then

A B A (After)

0 0 0

0 1 1

1 0 1

1 1 1
Example:

If the H register contains 48H (01001000) and the Accumulator contains
12H (00010010), after the execution of

OR H
the Accumulator will contain SAH (01011010).

XOR s eXclusive OR

Operation: A { ADs

Format:

Mnemonic: XOR Operands: s

119

SERIES | EDITOR/ASSEMBLER
i T S S

The s operand is any of r, n, (HL), (IX+d) or (IY+d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:
T 1T T 1T T 1
XOR 110|1|0l1lrlr1r
T T T T T 1
XORn 111111011|1|1|0 EE
T 1T T 1T T 1
n n n n n n n n
N N TR N N
1T T T 1T T 1
XOR (HL) 11011|O|1|1|1|0 AE
1T T T T T 1T
XOR (IX+d) 1|1|051|1|1|011 DD
T 1 T 1T T 1
1 0 1.0 1 1 1 O AE
[R O T B
T T T T T 1
d d d d d d d d
[T TR I B
T T T T T 1
XOR (IY+4d) 1§1|1115111i011 FD
T T T 1T T 1
1 0 1 0 1 1 1 O AE
[S S N B N
T T T T T T
d d d d d d d d
N S N N R B |

r identifies registers A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

120

8 BIT ARITHMETIC AND LOGICAL GROUP
S S S S

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte
specified by the s operand and the byte contained in the Accumulator; the result
is stored in the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in ps
XORr 1 4 1.00
XOR n 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX+d) 5 19(4,4,3,5,3) 4.75
XOR (IY+4d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset
Table of XOR Values:
IF Then
A B A (After)
0 0 0
0 1 1
1 0 1
1 1 0

Note: in Table above that any two like numbers will result in zero.

Example 1:

If the Accumulator contains 96H (10010110), after the execution of
XOR 5DH (Note: SDH=01011101)
the Accumulator will contain CBH (11001011).

Example 2:

The instruction
XOR A
will zero the Accumulator.

121

SERIES | EDITOR/ASSEMBLER

CPs ComPare

Operation: A—S

Format:
Mnemonic: CP Operands: s

The s operand is any of r, n, (HL), (IX+d) or (IY+d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

CPr 1 0 1 1 1 r r r

CPn 11 1 1 1 1 1 O FE

CP (HL) 1 0 1 1 1 1 1 O BE
| | | | | 1 |
I I I I [I I

CP (IX+d) 1 [1 | 0 1 1 | l'l'l 1 0 | 1 DD
I I I T I I I

1 0 1 1 1 1 1 O BE

CP (IY+d) 1 1 1 1 1 1 0 1 FD

[f I I [I I

d d d d d d d d
Lo

r identifies register A, B, C, D, E, H or L assembled as follows in the object
code field above:

122

8 BIT ARITHMETIC AND LOGICAL GROUP
e R R

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

Description:

The contents of the s operand are compared with the contents of the
Accumulator. If there is a true compare, a flag is set.

M 4 MHz
Instruction Cycles T States E.T. in ps
CPr 1 4 1.00
CPn 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX+d) 5 19(4,4,3,5,3) 4.75
CP (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise o
P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow in Bit 7; reset otherwise
Example 1:

If the Accumulator contains 63H, the HL register pair contains 6000H and
memory location 6000H contains 6Q0H, the instruction

CP (HL)
will result in all the flags being reset except N.

Example: 2

If the Accumulator contains 65H and register C also contains 65H, then after the
execution of

Cp C
the Z flag will be set.
See Appendix E for more details of condition codes affected.

123

SERIES | EDITOR/ASSEMBLER

INC r INCrement

Operation: I {1+ 1

Format:

Mnemonic: INC Operands: r

Object Code:

Description:

Register r is incremented. r identifies any of the registers A, B, C, D, E, H or
L, assembled as follows in the object code.

Register r
A 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if r was 7FH before operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of register D are 28H, after the execution of
INC D
the contents of register D will be 29H.

124

8 BIT ARITHMETIC AND LOGICAL GROUP

INC (H L) INCrement

Operation: (HL) ¢ (HL) + 1

Format:

Mnemonic: INC Operands: (HL)

Object Code:

0 011 0 1 0 O 34

Description:

The byte contained in the address specified by the contents of the HL register
pair is incremented.

M cycles: 3 T states: 11(4,4,3) 4 MHz ET.: 2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (HL) was 7FH before operation; reset otherwise
N: Reset

C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and the contents of address
3434H are 82H, after the execution of

INC (HL)
memory location 3434H will contain 83H.

|NC (|X+ d) INCrement

Operation: (IX+d) ¢ (IX+d) + 1

Format:

Mnemonic: INC Operands: (IX+d)

125

SERIES | EDITOR/ASSEMBLER
A S S

Object Code:
I I I I I T I
1 1 0 1 1 1 0 1 DD
Lol
I I I I I] I
0o 01 1 0 1 0 O 34

Description:

The contents of the Index Register IX (register pair IX) are added to a two’s
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4.,4,3,5,4,3) 4MHzET.:5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IX+d) was 7FH before operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and the memory
location 2030H contains byte 34H, after the execution of

INC (IX+ 10H)

the contents of memory location 2030H will be 35H.

|NC (lY + d) INCrement

Operation: (IY+d) ¢ (IY+d)+1

Format:

Mnemonic: INC Operands: (IY+d)

126

8 BIT ARITHMETIC AND LOGICAL GROUP
S e S O S TS A

Object Code:
I I I T] I]
1 1 1 1 1 1 0 1 FD
Lol
I I I I I I I
0 0 1 1 0 1 0 O 34

Description:

The contents of the Index Register I'Y (register pair 1Y) are added to a two’s
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz ET.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set it (IY+d) was 7FH before operation; reset otherwise
N: Reset

C: Not Affected

Example:

If the contents of the Index Register pair ['Y are 2020H, and the memory
location 2030H contain byte 34H, after the execution of

INC Y+ 10H)
the contents of memory location 2030H will be 35H.

DEC m DECrement

Operation: M{m — 1

Format:
Mnemonic: DEC Operands: m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous INC instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

127

SERIES | EDITOR/ASSEMBLER
e e e

Object Code:
T T T T T 1
DECr 0O 0 r r r 1 0 1
I S T N B
T T T T T 1
DEC (HL) 01011|110111011 35
T T T T T 1
DEC (IX+d) 1’11011!]!1'011 DD
T T T T T 1
0O 0 1 1 0 1 0 1 35
L
T T T T T 1
d d d d d d d d
R N Y R
T T T T T 1
DEC (IY+d) 111i11111111011 FD
T T T T T 1
0O 0 1 1 0 1 0 1 35
[S T N N B
T T T T T 1
d d d d d d d d
[Y O R

r identifies register A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r
A 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

Description:

The byte specified by the m operand is decremented.

128

8 BIT ARITHMETIC AND LOGICAL GROUP
e e e e e

M 4 MHz
Instruction Cycles T States E.T. in ps
DECr 1 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX+d) 6 23(4,4,3,5,4,3) 5.75
DEC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if m was 80H before operation; reset otherwise
N: Set

C Not affected

Example:

If the D register contains byte 2AH, after the execution of
DEC D
register D will contain 29H.

129

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

General Purpose Arithmetic and
CPU Control Groups

DAA

Operation: Decimal-Adjust Accumulator

Format:

Mnemonic: DAA Operands:
Object Code:

Description:

This instruction modifies the results of addition or subtraction so that the results
of binary arithmetic are correct for decimal numbers. The Binary Coded
Decimal (BCD) code uses the 8-bit accumulator as follows: the eight bits are
broken up into two groups of four bits, which represent a two-digit decimal
number from 00 to 99. If numbers like this are added with the binary adder in
the Z-80, answers larger than 10 may result in each decimal place. The DAA
instruction will ‘‘adjust’’ the answer so that each decimal place has a value of 9
or less, and so that the digits have the correct decimal value, though they were
added by a binary circuit. The carry and half-carry flags are used in this
conversion, as is a circuit that detects digits that are 10 or bigger.

HEX HEX
Value in Value in Number

C Upper H Lower Added C

Before Digit Before Digit to After

Operation DAA (bits 7-4) DAA (bits 3-0) Byte DAA
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
INC 0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 I
SUB 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0
DEC 1 7-F 0 0-9 A0 1
NEG 1 6-F 1 6-F 9A 1

M cycles: 1 T states: 4 4 MHz ET.: 1.00

131

SERIES | EDITOR/ASSEMBLER
e = e]

Condition Bits Affected:

S: Set if most significant bit of Acc. is 1 after operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise

H: See instruction

P/V: Set if Acc. is even parity after operation; reset otherwise

N: Not affected

C: See instruction

Example:

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple
decimal arithmetic gives this result:

15
+27

42

But when the binary representations are added in the Accumulator according to
standard binary arithmetic,

0001 0101
+0010 0111

0011 1100=3C

the sum is not decimal. The DAA instruction adjusts this result so that the
correct BCD representation is obtained:

0011 1100
+ 0000 0110(adding 06 from table)

0100 0010=42

CPL ComPLement

Operation: AGA

Format:

Mnemonic: CPL Operands:

Object Code:

o 01 0 1 1 1 1| 2F

132

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:
Contents of the Accumulator (register A) are inverted (one’s complement).

M cycles: 1 T states: 4 4MHz ET.: 1.00

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Set

P/V: Not affected
N: Set

C: Not affected
Example:

If the contents of the Accumulator are 1011 0100, after the execution of
CPL
the Accumulator contents will be 0100 1011.

NEG NEGate

Operation: AJ0—A

Format:

Mnemonic: NEG Operands:

Object Code:
T 1T T T T 1
1 1.1 0 1 1 0O 1 ED
L1
T T T T T T 1
0 1.0 0 01 0 O 44
I T T N N
Description:

Contents of the Accumulator are negated (two’s complement). This is the same
as subtracting the contents of the Accumulator from zero. Note that 80H is left
unchanged.

M cycles: 2 T states: 8(4,4) 4 MHz ET.: 2.00

133

SERIES | EDITOR/ASSEMBLER

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if Acc. was 80H before operation; reset otherwise

N: Set

C: Set if Acc. was not OOH before operation; reset otherwise
Example:

If the contents of the Accumulator are
[tfoJoftfrfojofo]

after the execution of

NEG

the Accumulator contents will be
(oftJirfojtfojofo]

CCF Complement Carry Flag
Operation: CYOCY

Format:

Mnemonic: CCF Operands:

Object Code:

o 0 1 1 1 1 1 1] 3F

Description:
The C flag in the F register is inverted.
M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Previous carry will be copied

P/V: Not affected

N: Reset

C: Set if CY was 0 before operation; reset otherwise

134

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

SCF Set Carry Flag

Operation: CY {1

Format:

Mnemonic: SCF Operands:

Object Code:

o 0 1 1 0 1 1 1| 37

Description:
The C flag in the F register is set.
M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Not affected
N: Reset

C: Set

NOP No OPeration

Operation:

Format:

Mnemonic: NOP Operands:

Object Code:

T T T T 1
06 0 0 0 0 O
[L

|
0 O 00
L1

135

SERIES | EDITOR/ASSEMBLER
0

Description:
CPU performs no operation during this machine cycle.

M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected: None

HALT

Operation:

Format:

Mnemonic: HALT Operands:

Object Code:

o 1 1 1 0 1 1 O 76

Description:

The HALT instruction suspends CPU operation until a subsequent interrupt or
reset is received. While in the halt state, the processor will execute NOP’s to
maintain memory refresh logic.

M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected: None

DI Disable Interrupts
Operation: IFF {0

Format:

Mnemonic: DI Operands:

Object Code:

1 111 0 O 1 1| F3

136

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

DI disables the maskable interrupt by resetting the interrupt enable flip-flops
(IFF1 and IFF2). Note that this instruction disables the maskable interrupt
during its execution.

M cycles: 1 T states: 4 4MHz ET.: 1.00
Condition Bits Affected: None

Example:

When the CPU executes the instruction
DI

the maskable interrupt is disabled until it is subsequently re-enabled by an EI
instruction. The CPU will not respond to an Interrupt Request (INT) signal.

El Enable Interrupts

Operation: |IFF {1

Format:

Mnemonic: EI Operands:

Object Code:

1 1 1 1 1 0 1 1 FB

Description:

El enables the maskable interrupt by setting the interrupt enable flip-flops (IFF1
and IFF2). Note that this instruction disables the maskable interrupt during its
execution.

M cycles: 1 T states: 4 4 MHz ET.: 1.00
Condition Bits Affected: None

Example:

When the CPU executes instruction
RETI

the maskable interrupt is enabled. The CPU will now respond to an Interrupt
Request (INT) signal.

137

SERIES | EDITOR/ASSEMBLER

|M 0 Interrupt Mode 0

Operation:

Format:

Mnemonic: IM Operands: 0

Object Code:
T T T T T 1
1 1 1 0 1 1 0 1 ED
L
T T T T T T |
01 0 0 0O 1 1 O 46
[R N S N
Description:

The IM 0 instruction sets interrupt mode @. In this mode the interrupting device
can insert any instruction on the data bus and allow the CPU to execute it. The
first byte of a multi-byte instruction is read during interrupt acknowledge cycle.
Subsequent bytes are read in by a normal memory read sequence.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

"Vl 1 Interrupt Mode 1

Operation:

Format:

Mnemonic: IM Operands: 1

Object Code:

1 1 1 0 1 1 O 1| ED

o 1 0 1 O 1 1 O 56

138

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
(== e e e e

Description:

The IM instruction sets interrupt mode 1. In this mode the processor will
respond to an interrupt by executing a restart to location 0038H.

M cycles: 2 T states: 8(4,4) 4 MHz ET.: 2.00

Condition Bits Affected: None

|M 2 Interrupt Mode 2

Operation:

Format:

Mnemonic: IM Operands: 2

Object Code:
T T T T T 1
1 1 1 0 1 1 0 1 ED
L
T T T T T 1
o 1 0 1 1 1 1 O SE
I I H E B
Description:

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to
any location in memory. With this mode the CPU forms a 16-bit memory
address. The upper eight bits are the contents of the Interrupt Vector Register |
and the lower eight bits are supplied by the interrupting device.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

139

16 BIT ARITHMETIC GROUP

16 Bit Arithmetic Group
ADD HL,ss

Operation: HLJHL + ss

Format:
Mnemonic: ADD Operands: HL, ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added to the contents of register pair HL, and the result is stored in HL.
Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise
Example:

If register pair HL contains the integer 4242H and register pair DE contains
1111H, after the execution of

ADD HL, DE
the HL register pair will contain 5353H.

141

SERIES | EDITOR/ASSEMBLER

ADC HL,SS ADd with Carry

Operation: HLOHL+ss +CY

Format:

Mnemonic: ADC Operands: HL, ss

Object Code:

1 1 1 0 1 1 0 1 ED

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added with the Carry Flag (C flag in the F register) to the contents of register
pair HL, and the result is stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz ET.: 3.75

Condition Bits Affected: !

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry out of Bit 11; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 15; reset otherwise
Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the
Carry Flag is set, after the execution of

ADC HL, BC
the contents of HL will be 765AH.

142

16 BIT ARITHMETIC GROUP

SBCH L,SS SuBtract with Carry
Operation: HL(:J HL—-ss—-CY

Format:

Mnemonic: SBC Operands: HL, ss

Object Code:

Description:

The contents of the register pair ss (any of register pairs BC, DE, HL or SP)
and the Carry Flag (C flag in the F register) are subtracted from the contents of
register pair HL and the result is stored in HL. Operand ss is specified as
follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
Sp 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz ET.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 12; reset otherwise
P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents of register pair
DE are 1111H, and the Carry Flag is set, after the execution of

SBC HL, DE
the contents of HL will be 8887H.

143

SERIES | EDITOR/ASSEMBLER

ADD IX,pp

Operation: IX{IX+pp

Format:

Mnemonic: ADD Operands: IX,pp

Object Code:

1 1.0 1 1 1 O 1| DD

0 0 p p 1 00

Description:

The contents of register pair pp (any of register pairs BC, DE, IX or SP) are
added to the contents of the Index Register IX, and the results are stored in IX.
Operand pp is specified as follows in the assembled object code.

Register
Pair PP
BC 00
DE 01
IX 10
SP 11
M cycles: 4 T states: 15(4,4,4,3) 4 MHz ET.: 3.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise
Example:

If the contents of Index Register IX are 3333H and the contents of register pair
BC are 5555H, after the execution of

ADD IX, BC
the contents of IX will be 8888H.

144

16 BIT ARITHMETIC GROUP

ADD [Y,rr

Operation: Y 1Y+ rr

Format:

Mnemonic: ADD

Operands: 1Y, r

Object Code:
1T T T T T 1
1 1 1 1 1 1 0 1 FD
[S Y S I B
1 1T T T T 1
0 0 r r I O 0O 1
Lo
Description:

The contents of register pair rr (any of register pairs BC, DE, 1Y or SP) are
added to the contents of Index Register 1Y, and the result is stored in IY.
Operand rr is specified as follows in the assembled object code.

Register
Pair T
BC 00
DE 01
1Y 10
SpP 11
M cycles: 4

T states: 15(4,4,4,3)

4 MHz ET.: 3.75

Condition Bits Affected:

S:
Z:
H:
P/V:
N:
C:

Example:

Not affected
Not affected

Set if carry out of Bit 11; reset otherwise

Not affected
Reset

Set if carry from Bit 15; reset otherwise

If the contents of Index Register I'Y are 333H and the contents of register pair
BC are 555H, after the execution of

ADD 1Y, BC
the contents of I'Y will be 888H.

145

SERIES | EDITOR/ASSEMBLER

INC ss INCrement

Operation: SS (1SS + 1

Format:

Mnemonic: INC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
incremented. Operand ss is specified as follows in the assembled object code.

Register
Pair SS
BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz E.T.: 1.50
Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of
INC HL
HL will contain 1001H.

|NC |X INCrement

Operation: IX{1X+ 1

Format:

Mnemonic: INC Operands: 1X

146

16 BIT ARITHMETIC GROUP
e e e

Object Code:

T 1 T T T 1
1.1|0|1]1|11011 DD
T 1T T T T 1
0|0|1|O|010|111 23
Description:

The contents of the Index Register IX are incremented.

M cycles: 2 T states: 10(4,6) 4 MHz ET.: 2.50
Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 3300H after the execution of
INC IX
the contents of Index Register IX will be 3301H.

|NC |Y INCrement

Operation: Y 1Y+ 1

Format:

Mnemonic: INC Operands: 1Y

Object Code:
1 T T 1T T 1
1 1 1 1 1 1 0 1 FD
I I Y N B
1 T T 1T T 1
0 01 0 0 O0 1 1 23
L
Description:

The contents of the Index Register I'Y are incremented.

M cycles: 2 T states: 10(4,6) 4 MHz ET.: 2.50

Condition Bits Affected: None

147

SERIES | EDITOR/ASSEMBLER

Example:

If the contents of the Index Register are 2977H, after the execution of
INC 1Y
the contents of Index Register I'Y will be 2978H.

DEC ss DECrement

Operation: SS (4SS — 1

Format:

Mnemonic: DEC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of the register pairs BC, DE, HL or SP) are
decremented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz ET.: 1.50
Condition Bits Affected: None

Example:

If register pair HL contains 1001H, after the execution of
DEC HL
the contents of HL will be 1000H.

148

16 BIT ARITHMETIC GROUP

DECrement

DEC IX
Operation: [X{IX—1

Format:
Mnemonic: DEC Operands: 1X

Object Code:

I T T I T I I
1 1.0 1 1 1 0 1 DD
[N T O N N
I T T I I I I
0O 01 0 1 O 1 1 2B
B I Y I TR N B
Description:

The contents of Index Register IX are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50
Condition Bits Affected: None

Example:

If the contents of Index Register IX are 2006H, after the execution of
DEC IX
the contents of Index Register IX will be 2005H.

DEC IY

Operation: 1Y Q1Y —1

DECrement

Format:
Mnemonic: DEC Operands: [Y

Object Code:
T T T T T 1
1 1 1 1 1 1 0 1 FD
Y A T T N I
1 T T 1T T 1
o 0 1 0 1 O 1 1 2B
[T R SR N N

149

SERIES | EDITOR/ASSEMBLER
e e e]

Description:
The contents of the Index Register I'Y are decremented.
M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, after the execution of
DEC 1Y
the contents of Index Register I'Y will be 7648H.

150

ROTATE AND SHIFT GROUP

Rotate and Shift Group

RLCA Rotate Left Circular Accumulator
Operation: | CY | <}|l 740 | <;

A
Format:

Mnemonic: RLCA Operands:

Object Code:

I I I I I [I

6 6 00 0 1 1 1| 07
IS Y N S O T

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit
is moved to bit 1; the previous content of bit 1 is moved to bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. (Bit 0 is the least significant bit.)

M cycles: 1 T states: 4 4 MHz ET.: 1.00
Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Acc.
Example:

If the contents of the Accumulator are
7 6 5 4 3 2 1 0
[tfoJofo[1]ofofo]

after the execution of
RLCA
the contents of the Carry Flag and the Accumulator will be

C 76 5 43 2 10
[1][ofofJofrfoJofoft]

151

SERIES | EDITOR/ASSEMBLER

RLA Rotate Left Accumulator
Operation:l'i CY l <]-{ 70 l (}-\
A

Format:

Mnemonic: RLA Operands:

Object Code:

o 0o o1 0 1 1 1| 17

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit 0
is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern
is continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and the previous content of the Carry Flag is copied
into bit 0. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Acc.
Example:

If the contents of the Carry Flag and the Accumulator are
C 7 6 5 4 3 2 1 0
Lol fifrjofrfifol]

after the execution of
RLA
the contents of the Carry Flag and the Accumulator will be

c 7 6 5 4 3 2 1 0

Lojffrfrfofrfrjofu]

152

ROTATE AND SHIFT GROUP

RRCA Rotate Right Circular Accumulator
Operation:g (0 ﬂ{> { CYW

A
Format:

Mnemonic: RRCA Operands:

Object Code:
I I I I I I]
010101011111111 OF

Description:

The contents of the Accumulator (register A) are rotated right: the content of bit
7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit 0 is copied into
bit 7 and also into the Carry Flag (C flag in register F.) Bit 0 is the least
significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit @ of Acc.
Example:

If the contents of the Accumulator are
7 6 5 4 3 2 1 0
[oJofof1]ofojo]r1]

After the execution of
RRCA
the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

[tlofofofuifofofof[t]

153

SERIES | EDITOR/ASSEMBLER

RRA Rotate Right Accumulator
Operation:l‘D | 700 [|CY]—I
A

Format:

Mnemonic: RRA Operands:

Object Code:

o 0 0 1 1 1 1 1 IF

Description:

The contents of the Accumulator (register A) are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit @ is copied into
the Carry Flag (C flag in register F) and the previous content of the Carry Flag
is copied into bit 7. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit @ of Acc.
Example:

If the contents of the Accumulator and the Carry Flag are

76 5 4 3 2 1 0 C
[tfrfrfofofofofi]lo]

after the execution of
RRA
the contents of the Accumulator and the Carry Flag will be

76 5 43 2 1 0 C
[of1[r]r]ofJofofof[1]

154

ROTATE AND SHIFT GROUP

RLCr Rotate Left Circular
Operation: | CY | <>ﬂ 740 | ;:l‘—l

r
Format:

Mnemonic: RLC Operands: r

Object Code:

1 1.0 0 1 0 1 1| CB

Description:

The eight-bit contents of register r are rotated left: the content of bit 0 is copied
into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. Operand r is specified as follows
in the assembled object code:

Register r

000
001
010
011
100
101
111

Note: Bit 0 is the least significant bit.
M cycles: 2 T states: 8(4,4) 4MHzET.: 2.00

PO ITmONOw

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Vi Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

155

SERIES | EDITOR/ASSEMBLER
A A T A A T AP

Example:
If the contents of register r are

7 6 5 4 3 2 1 0

[t]ofJofof1[ofofo]

after the execution of
RLC r
the contents of the Carry Flag and register r will be

c 7 6 5 4 3 2 1 0

(][00 0 1 [0]0]0[1]

RLC (H L) Rotate Left Circular
Operation: | CY IQ[{ (7H<}L(';];]

Format:

Mnemonic: RLC Operands: (HL)

Object Code:

I I I I I I I
11 0 0 1 O 1 1 CB
T S T O N
T T T T T 1
0 0 0 0 0 1 1 O 06
I TR O O N B
Description:

The contents of the memory address specified by the contents of register pair
HL are rotated left: the content of bit 0 is copied into bit 1; the previous content
of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register F) and also into
bit 0. Bit 0 is the least significant bit.

M cycles: 4 T states: 15(4,4,4.3) 4 MHz ET.: 3.75

156

ROTATE AND SHIFT GROUP

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register
Example:

If the contents of the HL register pair are 2828H, and the contents of memory
location 2828H are

76 5 4 3 2 1 0
[t]oJoJoJt]ofofo]

after the execution of
RLC (HL)
the contents of the Carry Flag and memory locations 2828H will be

c 7 6 5 4 3 2 1 O

[t][ofofoftfofofo]1]

RLC (|X+ d) Rotate Left Circular

Operation: ‘ CY] O'[' 7 G0 l <J
(IX+d)

Format:
Mnemonic: RLC Operands: (IX+d)

Object Code:

157

SERIES | EDITOR/ASSEMBLER
= e

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register IX and a two’s complement displacement integer d, are rotated
left: the contents of bit 0 is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout the byte. The content of
bit 7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0
is the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHzET.:5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register
Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0
[1[oJoJoJ1]ojJofo]
after the execution of

RLC (IX+2H)
the contents of the Carry Flag and memory location 1002H will be

c 7 6 5 4 3 2 1 0

[t][ofofofir]ofofo]t]

RLC (|Y+ d) Rotate Left Circular
Operation: {CY | <j£(730 ;;’

Y+ d)l

Format:

Mnemonic: RLC Operands: (IY+d)

158

ROTATE AND SHIFT GROUP
s

Object Code:
T T T T T 1
1 1. 1 1 1 1 0O 1 FD
[N TR N N B
T T T T T 1T
1 1.0 0 1 0 1 1 CB

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register IY and a two’s complement displacement integer d are rotated
left: the content of bit 0 is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this process is continued throughout the byte. The content of
bit 7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0
is the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register
Example:

If the contents of the Index Register IY are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0

[t]oJoJoft]oJo]o]

159

SERIES | EDITOR/ASSEMBLER

after the execution of
RLC (IY+2H)
the contents of the Carry Flag and memory location 1002H will be

c 7 6 5 4 3 2 1 0

(] [0T0 0 [[0]0[0]1]

RLm Rotate Left
Operation:qCY | H 740 | <]j
m

Format:

Mnemonic: RL Operands: m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

RLr 1 1.0 0 1 O 1 1| CB

RL (HL) 11 0 0 1 O 1 1 CB
BN S IR N T S N
1 T T T 1 1

0o 0 0o 1 0 1 1 O 16
[I SN N N R
1 T T T T 1

RL (IX+d) 111101111111011 DD
T 1T T T T 1

11 0 0 1 O 1 1 CB
3 N S N E R B

160

ROTATE AND SHIFT GROUP

RL (IY+d) 1 1 1 1 1 1 0 1 FD

I T T I I I I

0 0o 0o 1 O 1 1 0} 16
[IR R N N B

r identifies register B, C, D, E, H, L or A specified as follows in the assembled
object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111
Description:

The contents of the m operand are rotated left: the content of bit 0 is copied into
bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued
throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 0. Bit @
is the least significant bit.

M 4 MHz
Instruction Cycles T States E.T. in ps
RLr 2 8(4,4) 2.00
RL (HL) 4 15(4,4,4,3) 3.75
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75
RL (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

161

SERIES | EDITOR/ASSEMBLER

Example:
If the contents of the Carry Flag and register D are
C 7 6 5 4 3 2 1 0

[oj[1fofofofurfurfr]t]

after the execution of
RL D
the contents of the Carry Flag and register D will be

c 7 6 5 4 3 2 1 0

[tjfofofofurfurfrjrjo]

RRC m Rotate Right Circular

Operation:|{_> ‘ 700 ﬂ{> [CY \

m

Format:
Mnemonic: RRC Operands: m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

RRC r 1 1.0 0 1 0 1 1| CB

RRC (HL) 1 1 0 0 1 0 1 1 CB

162

ROTATE AND SHIFT GROUP

RRC (IX+d) 1 1 0 1 1 1 0 1 DD

1 T T T T 1
0101010|11]1110 OE
N A D N N

RRC (IY+d) 111111111111011 FD
T T T T T 1
11 0 0 1 0 1 1 CB

0o 0 o 0 1 1 1 O 0OE

r identifies register B, C, D, E, H, L or A specified as follows in the assembled
object code above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of operand m are rotated right: the content of bit 7 is copied into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in
the F register) and also into bit 7. Bit 0 is the least significant bit.

163

SERIES | EDITOR/ASSEMBLER

M 4 MHz
Instruction Cycles T States E.T. in ps
RRCr 2 8(4,4) 2.00
RRC (HL) 4 15(4,4,4,3) 3.75
RRC (IX+d) 6 23(4,4,3,5,4,3) 5.75
RRC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 0 of source register
Example:

If the contents of register A are

76 5 4 3 2 1 0
[ofoft]r]ofojoft]

after the execution of
RRC A
the contents of register A and the Carry Flag will be

76 5 4 32 1 0 C
[tfofofr]rfoJofof[1]

RRm Rotate Right
Operation:l-[> | 700 K |CY)—I
m

Format:

Mnemonic: RR Operands: m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

164

ROTATE AND SHIFT GROUP
e e e e

Object Code:

RRr 1 1.0 0 I O 1 1| CB

T T T T T 1

RR (HL) 11 0 0 1 O 1 1 CB
S A Y R N |
T T T 1T 1 1

0 0 0 1 1 1 1 0 1E
I S N N B B |
T T T T T 1

RR (IX+d) 11110.111111011 DD
1 T T 1 T 1

11 0 0 1 0 1 1 CB

0 0 0 1 I 1 1 O 1E
[EN N N N B B
T T T 1T 1 1

RR (IY+d) lllllllllllloll FD
T T T T T 1

11 0 0 1 0 1 1 CB

I T T I I I I

0o 0 o 1 1 1 1 0] IE
L

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled
object code above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

165

SERIES | EDITOR/ASSEMBLER

Description:

The contents of operand m are rotated right: the contents of bit 7 is copied into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit @ is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 7. Bit @
is the least significant bit.

M 4 MHz

Instruction Cycles T States E.T. in ps
RRr 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,5,4,3) 5.75
RR (IY+d) 6 23(4,4,3,5,4,3) 5.75
Condition Bits Affected:
S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C Data from Bit @ of source register
Example:

If the contents of the HL register pair are 4343H, and the contents of memory
location 4343H and the Carry Flag are

76 5 4 3 2 1 0 C
[rfrfofuefuifrjofurjlo]

after the execution of
RR (HL)
the contents of location 4343H and the Carry Flag will be

76 5 4 3 2 1 0 C
(oftfrfofufrfifol[t]

SLAm Shift Left Arithmetic

Operation: {CY l O“ 740 } Q0
m

Format:

Mnemonic: SLA Operands: m

166

ROTATE AND SHIFT GROUP

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

SLAr 1 1.0 0 1 O 1 1| CB

SLA (HL) 111;01011101111 CB
r 1T T 1T T T 1
0;011;0|0|1;1[0 26
T T 1T T T 1

SLA (IX+d) 11 0 1 1 1 0 1 DD

I T | I I I I
00 1 0 0 1 1 0 26
| | | | | | |
I I I T I I I
SLA (IY+d) Lo 10 FD
I I I [] I I
1 1.0 0 1 0 1 1 CB

0 01 0 0 1 1 O 26

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled
object code field above:

167

SERIES | EDITOR/ASSEMBLER
(= = ——

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

An arithmetic shift left is performed on the contents of operand m: bit 0 is reset,
the previous content of bit 0 is copied into bit 1, the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout; the content of bit 7 is

copied into the Carry Flag (C flag in register F). Bit 0 is the least significant bit.

M 4 MHz
Instruction Cycles T States E.T. in ps
SLA 2 8(4,4) 2.00
SLA (HL) 4 15(4,4,4,3) 3.75
SLA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SLA (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit 7

Example:

If the contents of register L are

76 5 4 3 2 1 0
[1foftfrfofofoft]

after the execution of
SLA L
the contents of the Carry Flag and register L will be

C 7 6 5 43 2 10
[tflofr]rfofoJofifo]

168

ROTATE AND SHIFT GROUP

SRAmM Shift Right Arithmetic

Operation: _| 750]"D l CY]
m

Format:
Mnemonic: SRA Operands: m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:
T T T T T 1

SRAr 111!0103110|111 CB
T T T T T 7T
0O 0 1 0 1 r r r
T R N T S B
T T T T T 1

SRA (HL) 1111010I11011]1 CB
T T T T T 1
o 0 1 0 1 1 1 O 2E
Lo
T T T T T 1T

SRA (IX+d) 1111011[1‘110]1 DD
T T T T T 1
1 1. 00 1 0 1 1 CB
Lol
T T T T T 1
d d d d d d d d
A R T T B B
T T T T T 1
0O 0 1 0 1 1 1 O 2E
L

169

SERIES | EDITOR/ASSEMBLER

SRA (IY+d) 11 1 1 1 1 0 1 FD

o o0 1 0 1 1 1 O 2E

r means register B, C, D, E, H, L or A specified as follows in the assembled
object code field above:

Register r

000
001
010
011
100
101
111

PO ImOOw

An arithmetic shift right is performed on the contents of operand m: the content
of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the byte. The content of bit @ is copied into the
Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged.
Bit 0 is the least significant bit.

M 4 MHz
Instruction Cycles T States E.T. in ps
SRAr 2 8(4,4) 2.00
SRA (HL) 4 15(4,4,4,3) 3.75
SRA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRA (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit 0 of source register

170

ROTATE AND SHIFT GROUP
O AR 1554865 M SR

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1003H are

76 5 43 2 10
Ltfoftrfrfifojojo]

after the execution of
SRA (IX+3H)
the contents of memory location 1003H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

(tfrfJofrfrfifojojfo]

SRL m Shift Right Logical

Operation: () ‘ 700 I—(:) l CcYy [
m

Format:
Mnemonic: SRL Operands: m

The operand m is any of r, (HL), (IX+d) or (IY+d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:
I I I I T I

SRL r 11110101110‘111 CB
I I I I T I I
o o 1 1 1 r r r
I | I | | | |
| I I [I I I

SRL (HL) I‘IIOIO‘llOllll CB
I I I I T [I
OIOIIIIIIIIIIIO 3E

171

SERIES | EDITOR/ASSEMBLER

SRL (IX+d) 1 1.0 1 1 1 0 1 DD

o 0 1t 1 1 1 1 O 3E
Lo
I I I I I [I

SRL (IY+d) llllllllllllOll FD
I I I I I I I
1 1.0 0 1 O 1 1 CB

0o 0 1 1 1 1 1 O 3E

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled
object code fields above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111
Description:

The contents of operand m are shifted right: the content of bit 7 is copied into
bit 6; the content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag, and bit 7
is reset. Bit 0 is the least significant bit.

172

ROTATE AND SHIFT GROUP

M 4 MHz
Instruction Cycles T States E.T. in ps
SRL r 2 8(4,4,) 2.00
SRL (HL) 4 15(4,4,4,3) 3.75
SRL (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRL (IY+d) 6 23(4,4,3,54,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit @ of source register
Example:

If the contents of register B are

7 6 5 4 3 2 1 0

(tlofofofrfurfufr]

after the execution of
SRL B
the contents of register B and the Carry Flag will be

7 6 5 4 3 2 1 0 C

[ofrfofofofufufrflt]

RLD Rotate Left Decimal

3

Operation: A[7 4]30] [7 4]3 0] (HL)
e

Mnemonic: RLD Operands:

Format:

173

SERIES | EDITOR/ASSEMBLER
T

Object Code:
I [I I I I I
I 1 1 0 1 1 0 1 ED
[S S Y SO T
I i f I | I I
o 1t 1 0 1 1 1 1 6F
L
Description:

The contents of the low order four bits (bits 3, 2, 1 and 0) of the memory
location (HL) are copied into the high order four bits (7, 6, 5 and 4) of that same
memory location; the previous contents of those high order four bits are copied
into the low order four bits of the Accumulator (register A), and the previous
contents of the low order four bits of the Accumulator are copied into the low
order four bits of memory location (HL). The contents of the high order bits of
the Accumulator are unaffected. Note: (HL) means the memory location
specified by the contents of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset otherwise

Z: Set if Acc. is zero after operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of the HL register pair are S000H, and the contents of the
Accumulator and memory location S000QH are

7 6 5 4 3 2 1 0

(oftJi]1]r]Jo]l1]o] Accumulator

7 6 5 4 3 2 1 0

loJlojt]1]olo]Jo] 1| (5000H)

174

ROTATE AND SHIFT GROUP

after the execution of
RLD
the contents of the Accumulator and memory location SO00OH will be

7 6 5 4 3 2 1 0
[0’1[1!1‘0]0[1]1] Accumulator

76 5 4 3 2 1 0
lofofJoJ1]t]o]t[o] (5000H)

RRD Rotate Right Decimal
L[|

Operation: A[7 4]3 0] [7 4[3 0] (HL)
< |

Format:

Mnemonic: RRD Operands:

Object Code:

1T T 1T T T 1
1 1 1.0 1 1 0 1 ED
L
T T T T T]
o 1 1 0 O 1 1 1 67
[S S S B B
Description:

The contents of the low order four bits (bits 3, 2, 1 and @) of memory location
(HL) are copied into the low order four bits of the Accumulator (register A); the
previous contents of the low order four bits of the Accumulator are copied into
the high order four bits (7, 6, 5 and 4) of location (HL); and the previous
contents of the high order four bits of (HL) are copied into the low order four
bits of (HL). The contents of the high order bits of the Accumulator are
unaffected. Note: (HL) means the memory location specified by the contents

of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz ET.: 4.50

Condition Bits Affected:

175

SERIES | EDITOR/ASSEMBLER
e e

S: Set if Acc. is negative after operation; reset otherwise

Z: Set if Acc. is zero after operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the
Accumulator and memory location S000H are

76 5 4 3 2 1 0
[1]JoJoJoJo]1]0]0] Accumulator

76 5 4 3 2 1 0
oJo[t]olofJoJo[o]| (Se00H)

after the execution of
RRD
the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0
[IIOIOIOIOJOlOIO' Accumulator

76 5 4 3 2 1 0
lo[t]JoJoJoJo]1]o] (5000H)

176

BIT SET, RESET AND TEST GROUP

Bit Set, Reset and Test Group
BITb, r BIT test

Operation: Z (] Fb

Format:

Mnemonic: BIT Operands: b, r

Object Code:

1 1.0 0 1 0 1 1| CB

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the indicated register. Operands b
and r are specified as follows in the assembled object code:

Bit

Tested b Register r

0 000 B 000

1 001 C 001

2 010 D 010

3 011 E 011

4 100 H 100

5 101 L 101

6 110 A 111

7 111
M cycles: 2 T states: 8(4,4) 4 MHz E.T.:2.00
Condition Bits Affected:
S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

177

SERIES | EDITOR/ASSEMBLER
TR S

Example:

If bit 2 in register B contains 0, after the execution of
BIT 2, B

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0.
(Bit 0 in register B is the least significant bit.)

BIT b,(HL) Blt Test

Operation: Z{ (HL),

Format:

Mnemonic: BIT Operands: b, (HL)

Object Code:

1 1.0 0 1 O I 1| CB

Description:

This instruction tests bit b in the memory location specified by the contents of
the HL register pair and sets the Z flag accordingly. Operand b is specified as
follows in the assembled object code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 3 T states: 12(4,4.,4) 4 MHz ET.: 3.00

Condition Bits Affected:

178

BIT SET, RESET AND TEST GROUP
B 2 e S S S

Unknown

Set if specified Bit is 0; reset otherwise
Set

Unknown

Reset

Not affected

QTTZTIN®
=27

Example:

If the HL register pair contains 444H, and bit 4 in the memory location 444H
contains 1, after the execution of

BIT 4,(HL)

the Z flag in the F register will contain @, and bit 4 in memory location 444H
will still contain 1. (Bit @ in memory location 444H is the least significant bit.)

BIT b,(IX+d) Blt Test

Operation: Z {1 (IX+d),

Format:

Mnemonic: BIT Operands: b, (IX+d)

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
Lo
T T T T T 1
1 1.0 0 1 0 1 1 CB

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents register pair IX (Index Register IX) and
the two’s complement displacement integer d. Operand b is specified as follows
in the assembled object code.

179

SERIES | EDITOR/ASSEMBLER

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHzET.: 5.00
Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise
H: Set

P/V: Unknown

N: Reset

C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of

BIT 6,(IX+4H)

the Z flag in the F register will contain @, and bit 6 in memory location 2004H
will still contain 1. (Bit @ in memory location 2004H is the least significant bit.)

BIT b,(lYij) BIT Test

Operation: Z { (1Y +d),
Format:
Mnemonic: BIT Operands: b, (IY+d)
Object Code:
T 1T T T T 1
1 1 1 1 1 1 0 1 FD
L
T T 1T T T 1
1 1.0 0 1 O 1 1 CB

180

BIT SET, RESET AND TEST GROUP

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents of register pair IY (Index Register ['Y) and
the two’s complement displacement integer d. Operand b is specified as follows
in the assembled object code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz E.T.: 5.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise
H: Set

P/V: Unknown

N: Reset

C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of

BIT 6,(1Y+4H)

the Z flag in the F register still contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit @ in memory location 2004H is the least significant bit.)

SET b,r

Operation: ', 1

Format:

Mnemonic: SET Operands: b, r

181

SERIES | EDITOR/ASSEMBLER

Object Code:

Description:

Bit b (any bit, 7 through 0) in register r (any of register B, C, D, E, H, L or A)
is set. Operands b and r are specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4) 4 MHz ET.: 2.00
Condition Bits Affected: None

Example:

After the execution of
SET 4,A
bit 4 in register A will be set. (Bit 0 is the least significant bit.)

SET b,(HL)

Operation: (HL), (1

Format:

Mnemonic: SET Operands: b, (HL)

182

BIT SET, RESET AND TEST GROUP
. S

Object Code:

110 0 1 O 1 1| CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the contents of
register pair HL is set. Operand b is specified as follows in the assembled object
code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 4 T states: 15(4,4,4,3) 4 MHz ET.: 3.75
Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the execution of
SET 4,(HL)

bit 4 in memory location 3000H will be 1. (Bit @ in memory location 3000H
is the least significant bit.)

SET b, (IX+d)

Operation: (IX+d),¢1

Format:

Mnemonic: SET Operands: b, (IX+d)

183

SERIES | EDITOR/ASSEMBLER

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
AR TR R N SO B
T T T T T
1 1 0 0 1 O 1 1 CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the IX register pair (Index Register IX) and the two’s complement
integer d is set. Operand b is specified as follows in the assembled object code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz ET.:5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 2000H, after the execution of
SET 0,(IX+3H)

bit @ in memory location 2003H will be 1. (Bit @ in memory location 2003H
is the least significant bit.)

184

BIT SET, RESET AND TEST GROUP

SET b,(IY+d)

Operation: (IY+d),@1

Format:

Mnemonic: SET Operands: b, (IY+d)

Object Code:

T T 1T T T 1

1 1 1 1 1 0 1 FD
L
T T T T T 1

1 1 0 0 1 0 1 1 CB
I I N T N B
1 T T T T 1

d d d d d d d
L
T T T T T 1

1 1 b b 1 1 0
L

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the IY register pair (Index Register [Y) and the two’s complement
displacement d is set. Operand b is specified as follows in the assembled object

code:
Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6

T states: 23(4,4,3,5,4,3) 4MHzET.:5.75

Condition Bits Affected: None

185

SERIES | EDITOR/ASSEMBLER

Example:

If the contents of Index Register I'Y are 2000H, after the execution of
SET 0,(0Y+3H)

bit @ in memory location 2003H will be 1. (Bit 0 in memory location 2003H
is the least significant bit.)

RES b,m RESet

Operation: Sb<] 0

Format:
Mnemonic: RES Operands: b, m

Operand b is any bit (7 through 0) of the contents of the m operand, (any of r,
(HL), (IX+d) or (IY+d) as defined for the analogous SET instructions. These
various possible opcode-operand combinations are assembled as follows in the
object code:

Object Code:
| | T T T 1

RES b, r 1|1|0|011|O;1|1 CB
| | T T T 1
1 0 b b b r r r
| | | | 1 [
| | ! T T 1

RES b, (HL) 1|11010|1|0|1|1 CB
T 1 ! l | l
1 0 b b b 1 1 0
| L | | | |
1 l ! | T

RES b, (IX+d) 1|1|011|1|110|1 DD
T 1 l | l !
1 1. 0 0 1 O 1 1 CB
[| | [

186

BIT SET, RESET AND TEST GROUP

I I I I I I
RES b, (IY+d) llljlllLlLllO 1 FD
I I I I I T
1 1 0 0 1 0 1 CB
[R T T B
I I I [I I
d d d d d d d
[N S T B
I I I I I I
]|01b|b|b|l| 0
Bit
Reset b Register r
0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111
Description:
Bit b in operand m is reset.
M 4 MHz
Instruction Cycles T States E.T. in ps
RES r 4 8(4,4) 2.00
RES (HL) 4 15(4,4,4,3) 3.75
RES (IX+d) 6 23(4,4,3,5,4,3) 5.75
RES (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected: None

Example 1:

After the execution of
RES 6,D (object code CB,

B2H)

bit 6 in register D will be reset. (Bit 0 in register D is the least significant bit.)

Example 2:

If HL contains 7000H and address 7000H contains FFH, after

RES 0,(HL)

address 7000H will contain FEH.

187

JUMP GROUP

Jump Group

JP nn JumPp

Operation: PC {nn

Format:

Mnemonic: JP Operands: nn

Object Code:

1 1 T 1
1 110101010 1 C3

Note: The first operand in this assembled object code is the low order byte of a
2-byte address.
Description:

Operand nn is loaded into register pair PC (Program Counter) and points to the
address of the next program instruction to be executed.

M cycles: 3 T states: 10(4,3,3) . 4 MHz E.T.: 2.50
Condition Bits Affected: None

Example:

JP 50Al1

This instruction will cause the program to jump to the instruction at SOATH by
loading the number S0A1H into the PC register.

189

SERIES | EDITOR/ASSEMBLER
S Y I R Y T O

JP cc,nn JumP
Operation: |[F cc TRUE, PC {nn

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

T I I I [I I

1 1 ¢cc ¢cc cc 0 I O
I NN A S R R

T I I I I I I

| | | | | I |

n n n n n n n n
| | | | 1 | 1

Note: The first n operand in this assembled object code is the low order byte of a
2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. Condition
cc is programmed as one of eight status bits which correspond to condition bits
in the Flag Register (register F). These eight status bits are defined in the table
below, which also specifies the corresponding cc bit fields in the assembled
object code.

Relevant

cc Condition Flag
000 NZ non-zero Z (=0
001 Z zero Z (=1)
010 NC no-carry C (=0
011 C carry C (=1

100 PO parity odd P/V(=0)
101 PE parity even P/V(=1)
110 P sign positive S (=0
111 M sign negative S (=1)

M cycles: 3 T states: 10(4,3,3) 4 MHz ET.: 2.50

Condition Bits Affected: None

190

JUMP GROUP
. Y

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are O3H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the
CPU will fetch from address 1520H the byte O3H.

JR e Jump Relative

Operation: PCPC +e

Format:

Mnemonic: JR Operands: ¢

Object Code:

o 0 o 1 1 0 O O] 18

e-2 e-2 e-2 e-2 e-2 e-2 e-2 e-2
R R D L1

Description:

This instruction provides for unconditional branching to other segments of a
program. The value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. This jump as measured from the address of the instruction
opcode has a range of — 126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

M cycles: 3 T states: 12(4,3.5) 4 MHz ET.: 3.00
Condition Bits Affected: None

Example 1:

To jump forward five locations from address 480, the following assembly
language statement is used:

JR $+5
The resulting object code and final PC value is shown below:

191

SERIES | EDITOR/ASSEMBLER

Location Instruction

480 18

481 03

482 —QPC before jump
483 —

484

485 QPC after jump

Note: when using an assembler, $ + 5 used above would normally be replaced
by a label.

Example 2:

This program will skip around the NOP instruction.

START JR, END
NOP
END —

JR C,e Jump Relative

Operation: If C =0, continue
fC=1,PCOPC+e

Format:

Mnemonic: JR Operands: C, e

Object Code:

0o 0 1. 1.1 0 O O 38

l T | | I I |
e-2 1 e-2 | e-2 1 e-2 ’ e-2 1 e-2] e-2 | e-2

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to a ‘1, the value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. The jump as measured from the address of the instruction
opcode has a range of —126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the flag is equal to a ‘0, the next instruction to be executed is taken from the
location following this instruction.

192

JUMP GROUP
e

If condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz ET.: 3.00
If condition is not met:

M cycles: 2 T states: 7(4,3) 4MHz ET.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back four locations from 480.
The assembly language statement is:

JR C, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C QPC after jump
471D —

47 —

47F —_—

480 38

481 FA (two’s complement — 6)
482 QPC before jump

JR NC,e Jump Relative

Operation: If C =1, continue
IfC=0,PC{PC+e

Format:

Mnemonic: JR Operands: NC, e

Object Code:
T T T T T 1

0 0 1.1 0 0 0 O 30
I T T N N B

I I I [| I I
e-2 1 e-2 1 e-2 | e-2] e-2 | e-2 | e-2 [e-2

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to ‘0, the value of the displacement e is added to the Program Counter (PC) and

193

SERIES | EDITOR/ASSEMBLER

the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
arange of —126 to +129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a ‘1, the next instruction to be executed is taken from the
location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz ET.: 3.00
If the condition is not met:

M cycles: 7 T states: 7(4,3) 4 MHz ET.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction.
The assembly language statement is:

JR NC,$
The resulting object code and PC after the jump are shown below:

Location Instruction

480 30 QPC after jump
481 FD (two’s complement — 2)
482 —PC before jump

Note: this instruction would cause an infinite loop in the program.

JRZe Jump Relative

Operation: Z =0, continue
lfZ=1,PC{PC+e

Format:

Mnemonic: JR Operands: Z, e

Object Code:

0o 01 0 1 O O O 28

I I I | | | I
e-2 ‘ e-2 | e-2 | e-2 | e-2 1 e-2 1 e-2 1 e-2

194

JUMP GROUP

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal
to a ‘1, the value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. The jump as measured from the address of the instruction
opcode has a range of —126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the Zero Flag is equal to a ‘0, the next instruction to be executed is taken
from the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00
If the condition is not met:

M cycles: 2 T states: 7(4,3) 4MHz ET.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward five locations from
address 300. The following assembly language statement is used:

JR Z, $+5

The resulting object code and final PC value is shown below:

Location Instruction

300 28

301 03

302 — Q PC before jump
303 —

304 —

305 — (PC after jump

JR NZ,e Jump Relative

Operation: If Z=1, continue
IfZ=0,PCOPC+e

Format:

Mnemonic: JR Operands: NZ, e

195

SERIES | EDITOR/ASSEMBLER
[e e ——

Object Code:

| R B R B
0 061 0 0 0 0 O 20
N Y R N N W

[I I I I] T
e-2 i e-2 l e-2 | e-2 1 e-2 1 e-2 i e-2 1 e-2

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal
to a ‘0, the value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. The jump as measured from the address of the instruction
opcode has a range of —126 to +129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the Zero Flag is equal to a ‘1, the next instruction to be executed is taken
from the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz ET.: 3.00
If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back four locations from 480.
The assembly language statement is:

JR NZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C QPC after jump

47D —

47E —

47F —

480 20

481 FA (two’s complement — 6)
482 —PC before jump

196

JUMP GROUP

JP (HL) Jump
Operation: PC §HL

Format:

Mnemonic: JP Operands: (HL)

Object Code:

T 1 1 1 1 1
11 1 0 1 O O 1| E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL
register pair. The next instruction is fetched from the location designated by the
new contents of the PC.

M cycles: 1 T states: 4 4 MHz ET.: 1.00
Condition Bits Affected: None

Example 1:

If the contents of the Program Counter are 1000H and the contents of the HL
register pair are 4800H, after the execution of

JP (HL)

the contents of the Program Counter will be 4800H.

The program will jump to the instruction at address 4800H.

Example 2:

A typical software routine which uses JP (HL) is a jump table lookup program.
Assume that n 16-bit addresses are listed in consecutive bytes of memory
starting at address TBL. Also assume that the Accumulator contains a number
from 0 to n-1 representing the routine to be jumped to.

LD HL, TBL ; HL points to the first byte in the table.
ADD A, A : double A

LD DE, 0

LD E, A

ADD HL, DE ;if A originally contained 5, then HL now points to the
Sth address in the table

LD E, (HL)

INC HL

LD D, (HL) ; DE now contains the 5th address of the table
LD HL, DE ; HL now contains the 5th address of the table
JP (HL)

197

SERIES | EDITOR/ASSEMBLER

JP (IX) JumP

Operation: PC §IX

Format:

Mnemonic: JP Operands: (IX)

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
Lo
T T T 1T T 1T
1|1|1|O|11010|1 E9
Description:

The Program Counter (register pair PC) is loaded with the contents of the
IX Register Pair (Index Register IX). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz ET.: 2.00
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and the contents of the
IX Register Pair are 4800H, after the execution of

JP (IX)
the contents of the Program Counter will be 4800H.

JP (lY) JumP

Operation: PC §1Y

Format:

Mnemonic: JP Operands: (1Y)

Object Code:

198

JUMP GROUP

1T T 1T T T 1
1 1 1 1 1 1 0 1 FD
A A T S N
T T 1T T T 1
1 1 1 0 1 0 0 1 E9
Lo
Description:

The Program Counter (register pair PC) is loaded with the contents of the
IY Register Pair (Index Register IY). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4MHzET.: 2.00
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the
IY Register Pair are 4800H, after the execution of

JP (1Y)
the contents of the Program Counter will be 4800H.

DJNZ e Decrement Jump Not Zero

Operation:

Format:

Mnemonic: DJINZ Operands: e

Object Code:
T T T 1T T 1
OIOIOIIIOIOIOIO 10

T T I I I I]
e-2 l e-2 | e-2 le—2 l e-2 | e-2 | e—2J e-2

Description:

The instruction is similar to the conditional jump instructions except that a

register value is used to determine branching. The B register is decremented
and if a non zero value remains, the value of the displacement e is added to
the Program Counter (PC). The next instruction is fetched from the location

199

SERIES | EDITOR/ASSEMBLER

designated by the new contents of the PC. The jump is measured from
the address of the instruction opcode has a range of —126 to + 129 bytes.
The assembler automatically adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction
to be executed is taken from the location following this instruction.

If B+0:

M cycles: 3 T states: 13(5,3,5) 4 MHz ET.: 3.25
IfB=0:

M cycles: 2 T states: 8(5,3) 4MHzET.:2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DINZ
instruction. This routine moves a line from an input buffer INBUF) to an output
buffer (OUTBUF). It moves the bytes until it finds a carriage return, or until it
has moved 80 bytes, whichever occurs first.

LD B, 80 ; Set up counter
LD HL, Inbuf ; Set up pointers
LD DE, Outbuf
LOOP: LD A, (HL) ; Get next byte from
; input buffer
LD (DE), A ; Store in output buffer
CP O0DH ; Is it a CR?
JR Z, DONE ; Yes finished
INC HL ; Increment pointers
INC DE
DINZ LOOP ; Loop back if 80
; bytes have not
; been moved

DONE:

200

CALL AND RETURN GROUP

Call and Return Group
CALL nn

Operation: (SP —-1) @ PC,, (SP -2)4 PC,, PC{nn

Format:

Mnemonic: CALL Operands: nn

Object Code:

I T I [I I I

| | | | | | 1

Note: The first of the two n operands in the assembled object code above is the
least significant byte of a two-byte memory address.

Description:

After pushing the current contents of the Program Counter (PC) onto the top of
the external memory stack, the operands nn are loaded into PC to point to the
address in memory where the first opcode of a subroutine is to be fetched. (At
the end of the subroutine, a RETurn instruction can be used to return to the
original program flow by popping the top of the stack back into PC.) The push
is accomplished by first decrementing the current contents of the Stack Pointer
(register pair SP), loading the high-order byte of the PC contents into the
memory address now pointed to by the SP; then decrementing SP again, and
loading the low-order byte of the PC contents into the top of stack. Note:
Because this is a three-byte instruction, the Program Counter will have been
incremented by three before the push is executed.

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz ET.: 4.25
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1A47H, the contents of the Stack
Pointer are 3002H, and memory locations have the contents:

201

SERIES | EDITOR/ASSEMBLER
= e —

Location Contents

1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction CD3521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is
CALL 2135H

After the execution of this instruction, the contents of memory address 300 1H
will be 1AH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

Before:
Stack Pointer Address Stack
3002 3002 50
3003 1B
3004 3C

Program Counter
1A47

After CALL 2135H:

Stack Pointer Address Stack
3000 3000 4A
3001 1A
3002 50
3003 1B

Program Counter
2135

CALL cc,nn

Operation: IF cc TRUE: (SP —1) {PCy
(SP—-2) g PC., PC&nn

Format:

Mnemonic: CALL Operands: cc, nn

202

CALL AND RETURN GROUP
e e e e e

Object Code:

| I I I I I I

1 1 ¢ ¢cc cc 1 0 O
[T T N T B

I I I I T I I

| | | | | | |

I I I I I I I

Note: The first of the two n operands in the assembled object code above is the
least significant byte of the two-byte memory address.

Description:

If condition cc is true, this instruction pushes the current contents of the
Program Counter (PC) onto the top of the external memory stack, then loads
the operands nn into PC to point to the address in memory where the first
opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETurn
instruction can be used to return to the original program flow by popping the top
of the stack back into PC.) If condition cc is false, the Program Counter is
incremented as usual, and the program continues with the next sequential
instruction. The stack push is accomplished by first decrementing the current
contents of the Stack Pointer (SP), loading the high-order byte of the PC
contents into the memory address now pointed to by SP, then decrementing

SP again, and loading the low-order byte of the PC contents into the top of the
stack. Note: Because this is a three-byte instruction, the Program Counter will
have been incremented by three before the push is executed. Condition cc is
programmed as one of eight status bits which corresponds to condition bits in
the Flag Register (register F). Those eight status bits are defined in the table
below, which also specifies the corresponding cc bit fields in the assembled
object code:

Relevant

cc Condition Flag
000 NZ non-zero Z (=0)
001 Z zero Z (=1
010 NC non-carry C (=0
011 C carry C (=1

100 PO parity odd P/V(=0)
101 PE parity even P/V(=1)
110 P sign positive S (=0
111 M sign negative S (=1

203

SERIES | EDITOR/ASSEMBLER
e e ——

If cc is true:

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz ET.: 4.25
If cc is false:

M cycles: 3 T states: 10(4,3,3) 4 MHz ET.: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the Program Counter are
1A47H, the contents of the Stack Pointer are 3002H, and memory locations
have the contents:

Location Contents

1A47TH D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction D43521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 300 1H
will be 1AH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

RET RETurn

Operation: PCLO (SP), PCH q (SP + 1)

Format:

Mnemonic: RET Operands:

Object Code:

1 1.0 0 1 0 O 1] ©9

Description:

Control is returned to the original program flow by popping the previous
contents of the Program Counter (PC) off the top of the external memory stack,
where they were pushed by the CALL instruction. This is accomplished by first
loading the low-order byte of the PC with the contents of the memory address

204

CALL AND RETURN GROUP
e e e e e

pointed to by the Stack Pointer (SP), then incrementing the SP and loading the
high-order byte of the PC with the contents of the memory address now pointed
to by the SP. (The SP is now incremented a second time.) On the following
machine cycle the CPU will fetch the next program opcode from the location in
memory now pointed to by the PC.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack
Pointer are 2000H, the contents of memory location 2000H are B5SH, and the
contents of memory location 2001H are 18H, then after the execution of

RET
the contents of the Stack Pointer will be 2002H and the contents of the Program

Counter will be 18BSH, pointing to the address of the next program opcode to
be fetched.

Before:
Program Counter Address Stack
3535 2000 BS5
2001 18
2002 2E
2003 30
Stack Pointer
2000
After RET:
Program Counter Address Stack
18B5 2002 2E
2003 30

Stack Pointer
2002

RET cc RETurn

operation: |IF cc TRUE: PC_((SP), PC, 4(SP +1)

Format:

Mnemonic: RET Operands: cc

205

SERIES | EDITOR/ASSEMBLER

Object Code:

T I I | | I I

1 1 ¢ ¢cc cc O O O
[N R N S N

Description:

If condition cc is true, control is returned to the original program flow by
popping the previous contents of the Program Counter (PC) off the top of the
external memory stack, where they were pushed by the CALL instruction. This
is accomplished by first loading the low-order byte of the PC with the contents
of the memory address pointed to by the Stack Pointer (SP), then incrementing
the SP, and loading the high-order byte of the PC with the contents of the
memory address now pointed to by the SP. (The SP is now incremented a
second time.) On the following machine cycle the CPU will fetch the next
program opcode from the location in memory now pointed to by the PC. If
condition cc is false, the PC is simply incremented as usual, and the program
continues with the next sequential instruction. Condition cc is programmed as
one of eight status bits which correspond to condition bits in the Flag Register
F). These eight status bits are defined in the table below, which also specifies
the corresponding cc bit fields in the assembled object code.

Relevant
cc Condition Flag
000 NZ non-zero Z (=0
001 Z zero Z (=1)
010 NC non-carry C (=0
011 C carry C (=1

100 PO parity odd P/V(=0)

101 PE parity even P/V(=1)

110 P sign positive S (=0

111 M sign negative S (=1)

If cc is true:

M cycles: 3 T states: 11(5,3,3) 4 MHz ET.: 2.75
If cc is false:

M cycles: 1 T states: 5 4 MHz ET.: 1.25
Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program Counter are
3535H, the contents of the Stack Pointer are 2000H, the contents of memory
location 2000H are B5H, and the contents of memory location 2001H are 18H,
then after the execution of

RET M

206

CALL AND RETURN GROUP

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to
be fetched.

RETI

Operation: Return from interrupt

Format:

Mnemonic: RETI Operands:

Object Code:

T 1T T T T T 1T
1 1. 1 0 1 1 0 1 ED
I IR Y T B
T 1T T T T T 1
o 1 o 0 1 1 0 1 4D
Lo
Description:

This instruction is used at the end of an interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET
instruction).

2. To signal an I/O device that the interrupt routine has been completed. The
RETI instruction facilitates the nesting of interrupts, allowing higher priority
devices to suspend service of lower priority service routines. This instruction
also resets the IFF1 and IFF2 flip flops.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50
Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B, connected in a daisy chain
configuration with A having a higher priority than B.

. A B
“—IEI IEO [—{IEI IEO|—
s |

B generates an interrupt and is acknowledged. (The interrupt enable out, IEO,
of B goes low, blocking any lower priority devices from interrupting while B is
being serviced). Then A generates an interrupt, suspending service of B. (The

207

SERIES | EDITOR/ASSEMBLER

IEO of A goes ‘low’ indicating that a higher priority device is being serviced.)
The A routine is completed and a RETI is issued resetting the IEO of A,
allowing the B routine to continue. A second RETI is issued on completion of
the B routine and the IEO of B is reset (high), allowing lower priority devices
interrupt access.

RETN

Operation: Return from non maskable interrupt

Format:
Mnemonic: RETN Operands:

Object Code:
T T 1T T T 1
1 1 1 0 1 1 0 1 ED
B I T S Y B
1 T 1T 1T T 1
O 1. 0 0 O 1 0 1 45
B I T T N T B
Description:

Used at the end of a service routine for a non maskable interrupt, this instruction
executes an unconditional return which functions identically to the RET
instruction. That is, the previously stored contents of the Program Counter (PC)
are popped off the top of the external memory stack; the low-order byte of PC is
loaded with the contents of the memory location pointed to by the Stack Pointer
(SP), SP is incremented, the high-order byte of PC is loaded with the contents
of the memory location now pointed to by SP, and SP is incremented again.
Control is now returned to the original program flow: on the following machine
cycle the CPU will fetch the next opcode from the location in memory now
pointed to by the PC. Also the state of IFF2 is copied back into IFF1 to the state
it had prior to the acceptance of the NMI.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz ET.: 3.50
Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents of the Program
Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the
CPU will ignore the next instruction and will instead restart to memory address
0066H. That is, the current Program Counter contents of 1A45H will be pushed
onto the external stack address of OFFFH and OFFEH, high order byte first, and

208

CALL AND RETURN GROUP

0066H will be loaded onto the Program Counter. That address begins an
interrupt service routine which ends with RETN instruction. Upon the execution
of RETN, the former Program Counter contents are popped off the external
memory stack, low-order first, resulting in a Stack Pointer contents again of
1000H. The program flow continues where it left off with an opcode fetch to
address 1A45H.

RST P ReSTart
Operation: (SP —1) ¢PCy, (SP—-2)¢PC,, PC, 0O, PC_¢P

Format:
Mnemonic: RST Operands: P

Object Code:

Description:

The current Program Counter (PC) contents are pushed onto the external
memory stack, and the page zero memory location given by operand p is loaded
into the PC. Program execution then begins with the opcode in the address now
pointed to by PC. The push is performed by first decrementing the contents of
the Stack Pointer (SP), loading the high-order byte of PC into the memory
address now pointed to by SP, decrementing SP again, and loading the low-
order byte of PC into the address now pointed to by SP. The ReSTart instruction
allows for a Call to a subroutine at one of eight addresses as shown in the table
below. The operand p is assembled into the object code using the t column of
the table. Note: Since all addresses are in page zero of memory, the high order
byte of PC is loaded with @OH. The number selected from the *‘p’” column of
the table is loaded into the low-order byte of PC.

At the end of the subroutine a RETurn instruction can be used to return to the
original program by popping the top of the stack back into PC.

P t
00H 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

M cycles: 3 T states: 11(5,3,3) 4MHz ET.: 2.75

209

SERIES | EDITOR/ASSEMBLER

Example:

If the contents of the Program Counter are 15B3H, after the execution of
RST 18H (Object code 11011111)

the PC will contain 0018H, as the address of the next opcode to be fetched, and
the top number on the stack will be 15B3H.

210

INPUT AND OUTPUT GROUP

Input and Output Group

IN A,(n) INput

Operation: A {1 (N)

Format:

Mnemonic: IN Operands: A, (n)

Object Code:

Description:

The number of the input port is n. Data is input to register A. The operand n is
placed on the bottom half (A0 through A7) of the address bus to select the I/O
device at one of 256 possible ports. The contents of the Accumulator also
appear on the top half (A8 through A15) of the address bus at this time. Then
one byte from the selected port is placed on the data bus and written into the
Accumulator (register A) in the CPU.

M cycles: 3 T states: 11(4,3,4) 4 MHz ET.: 2.75
Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the
peripheral device mapped to I/O port address 01H, then after the execution of

IN A,(01H)

the Accumulator will contain 7BH.

211

SERIES | EDITOR/ASSEMBLER

IN r,(C) INput

Operation: I (C)

Format:

Mnemonic: IN Operands: r, (C)

Object Code:

| I I I T I I

11 1 0 1 1 0 1| ED
AN S N Y S B

I I I I I I I

| | L | | | |

Description:

Register C contains the number of the input port. Data is input to register r.

The contents of register C are placed on the bottom half (A0 through A7) of the
address bus to select the /0 device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
into register r in the CPU. Register r identifies any of the CPU registers shown
in the following table, which also shows the corresponding three-bit “‘r’’ field
for each. The flags will be affected, checking the input data.

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Not affected

212

INPUT AND OUTPUT GROUP
e e

Example:

If the contents of register C are O7H, the contents of register B are 10H, and the
byte 7BH is available at the peripheral device mapped to /O port address 07H,
then after the execution of

IN D,C)
register D will contain 7BH

A typical use of the IN r, (C) instruction is for polled I/O. The following
program continually polls or inputs data from port FF until a non-zero number
appears. The program then reads in data from port FE. In this application, port
FF is used as a data ready signal for port FE.

LD C, OFFH ; C points at port FF
LOOP IN B, (C) ; input port FF to register B
JR Z, LOOP ; continue polling until not zero
IN A, (OFEH) ; input port FE to register A
|N| INput & Increment

Operation: (HL) ¢(C), BB —1, HLGHL +1

Format:

Mnemonic: INI Operands:

Object Code:
1 T T T T 1
1 1 1t 0o 1 1 0 1 ED
I N T T B B
T T T T T 1
1 0 1 0 O O 1 O A2
Lo
Description:

Register C contains the number of the input port. Data input is placed in
memory at the address pointed at by HL. The contents of register C are placed
on the bottom half (AQ through A7) of the address bus to select the I/O device at
one of 256 possible ports. Register B may be used as a byte counter, and its
contents are placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
to the CPU. The contents of the HL register pair are then placed on the address
bus and the input byte is written into the corresponding location of memory.
Finally the byte counter is decremented and register pair HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.: 4.00

213

SERIES | EDITOR/ASSEMBLER
T O R B S

Condition Bits Affected:

S: Unknown

Z: Set if B—1=0; reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are O7H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to I/O port address 07H, then after the execution of
INI

memory location 1000H will contain 7BH, the HL register pair will contain
1001H, and register B will contain OFH.

The following program will input data from input ports 1 through 80 and place
the data into a buffer in memory.

LD B, 80
LD C.0
LD HL, BUFF
LOOP INC C
INI
P NZ, LOOP
lN | R INput Increment & Repeat

Operation: (HL) ¢(C), B¢B —1, HLOHL +1

Format:

Mnemonic: INIR Operands:

Object Code:

T 1 T T T T
Il 1 1 0 1 1 0 1| ED

1 0 1 1 0 0 1 O B2

214

INPUT AND OUTPUT GROUP

Description:

Register C contains the number of the input port. The data input is placed in
memory at the address pointed at by the HL register pair. The contents of
register C are placed on the bottom half (A0 through A7) of the address bus to
select the I/O device at one of 256 possible ports. Register B is used as a byte
counter, and its contents are placed on the top half (A8 through A15) of the
address bus at this time. Then one byte from the selected port is placed on

the data bus and written to the CPU. The contents of the HL register pair are
placed on the address bus and the input byte is written into the corresponding
location of memory. Then register pair HL is incremented, the byte counter is
decremented. If decrementing causes B to go to zero, the instruction is
terminated. If B is not zero, the PC is decremented by two and the instruction
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes
of data will be input. Also interrupts will be recognized after each data transfer.

If B#0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHz ET.: 5.25
If B=0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected
Example:

If the contents of register C are O7H, the contents of register B are O3H, the
contents of the HL register pair are 1000H, and the foliowing sequence of
bytes are available at the peripheral device mapped to I/O port of address 07H:
SIH

A9H

03H

then after the execution of
INIR

the HL register pair will contain 1003H, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

1000H S51H
1001H A9H
1002H 03H

215

SERIES | EDITOR/ASSEMBLER
e e —

Here is a program to input 80 bytes from I/O port number FF and put them into
an 80-byte buffer starting at address BUFF.

LD HL, BUFF ; HL points at first byte of buffer

LD B, 80 ; load byte counter

LD C, OFFH ; port FF

IN IR ; input 80 bytes

Note: this assumes that the input port can be synchronized with the input
instructions.

IN D INput & Decrement

Operation: (HL) ¢(C), B¢B -1, HLGHL -1

Format:

Mnemonic: IND Operands:

Object Code:
T T T T T 1
1 1 1 0 1 1 0 1 ED
I S N S S
1 T 1T T T 1
1!0|1101110|1|0 AA
Description:

The contents of register C are placed on the bottom half (A0 through A7) of the
address bus to select the I/0O device at one of 256 possible ports. Register B may
be used as a byte counter, and its contents are placed on the top half (A8
through A15) of the address bus at this time. Then one byte from the selected
port is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter and register pair HL
are decremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if B —1=0; reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

216

INPUT AND OUTPUT GROUP
O A AR AU 5 Tt

Example:

If the contents of register C are O7H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to I/O port address O7H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain
OFFFH, and register B will contain OFH.

| N D R INput Decrement & Repeat

Operation: (HL)(:](C), B¢B—1, HLHL —1

Format:

Mnemonic: INDR Operands:

Object Code:

I | I [I I T
1 1 1 0 1 1 0 1 ED
Lo
I I [I I [I
1 0 1 1 1 0 1 O BA
Lo
Description:

The contents of register C are placed on the bottom half (A0 through A7) of the
address bus to select the [/O device at one of 256 possible ports. Register B is
used as a byte counter, and its contents are placed on the top half (A8 through
A15) of the address bus at this time. Then one byte from the selected port

is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into

the corresponding location of memory. Then HL and the byte counter

are decremented. If decrementing causes B to go to zero, the instruction is
terminated. If B is not zero, the PC is decremented by two and the instruction
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of
data will be input. Also interrupts will be recognized after each data transfer.

If B+0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHzET.: 5.25
If B=0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.: 4.00

217

SERIES | EDITOR/ASSEMBLER

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected
Example:

If the contents of register C are O7H, the contents of register B are O3H, the
contents of the HL register pair are 1000H, and the following sequence of bytes
are available at the peripheral device mapped to I/O port address 07H:

5IH
A9H
03H

then after the execution of
INDR

the HL register pair will contain QFFDH, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

OFFEH 03H
OFFFH A9H
1000H 51H

OuUT (n),A OUTput

Operation: (n) aA

Format:

Mnemonic: OUT Operands: (n), A

Object Code:

1 1 0 1 0 O 1 1| D3

218

INPUT AND OUTPUT GROUP

Description:

The operand n is placed on the bottom half (AQ through A7) of the address
bus to select the 1/O device at one of 256 possible ports. The contents of the
Accumulator (register A) also appear on the top half (A8 through A15) of the
address bus at this time. Then the byte contained in the Accumulator is placed
on the data bus and written into the selected peripheral device.

M cycles: 3 T states: 11(4,3,4) 4 MHz ET.: 2.75
Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of
OuUT O0lH,A

the byte 23H will have been written to the peripheral device mapped to 1/O port
address O1H.

OUT (C),r OUTput

Operation: (C) ar

Format:

Mnemonic: OUT Operands: (C), r

Object Code:

I I I I T I I

Illlllollllloll ED

T I [I I [I

| | | | | | 1

Description:

The contents of register C are placed on the bottom half (A® through A7) of the
address bus to select the I/O device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through A15) of the address bus at this
time. Then the byte contained in register r is placed on the data bus and written
into the selected peripheral device. Register r identifies any of the CPU registers
shown in the following table, which also shows the corresponding three-bit “‘r’’
field for each which appears in the assembled object code:

219

SERIES | EDITOR/ASSEMBLER

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4.,4) 4 MHz ET.: 3.00
Condition Bits Affected: None

Example:

If the contents of register C are O1H and the contents of register D are SAH,
after the execution of

ouT (C).b

the byte SAH will have been written to the peripheral device mapped to I/O port
address O1H.

OUT' OUTput & Increment
Operation: (C) ¢(HL), B¢B —1, HLGHL +1

Format:

Mnemonic: OUTI Operands:

Object Code:
T T T T T 1
1 1 1.0 1 1 0 1 ED
[T O T E |
T T 1T T T 1
1 0 1 0 0 O 1 1 A3
[N B N B N
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A7) of the address bus
to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through

220

INPUT AND OUTPUT GROUP
e e e e e

A15) of the address bus. The byte to be output is placed on the data bus and
written into selected peripheral device. Finally the register pair HL is
incremented.

M cycles: 4 T states: 16(4,5,3.,4) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if B—1=0; reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are O7H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory address
100OH are 59H, then after the execution of

OUTI

register B will contain OQFH, the HL register pair will contain 1001H, and the
byte S9H will have been written to the peripheral device mapped to I/O port
address O7H.

OTI R OuTput Increment & Repeat
Operation: (C) ¢(HL), Ba4B —1, HLGHL +1

Format:

Mnemonic: OTIR Operands:

Object Code:

T T T T T 1
11111|O|1;1l0|1 ED
T T T T T T
1 0 1 1 0 0 1 1 B3
L
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A7) of the address bus

221

SERIES | EDITOR/ASSEMBLER
R s A B L L Y S

to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL
is incremented. If the decremented B register is not zero, the Program Counter
(PC) is decremented by two and the instruction is repeated. If B has gone to
zero, the instruction is terminated. Note that if B is set to zero prior to
instruction execution, the instruction will output 256 bytes of data. Also,
interrupts will be recognized after each data transfer.

If B+0:

M cycles: 5 T states: 21(4,5,3.4,5) 4 MHzET.: 5.25
If B=0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected
Example:

If the contents of register C are O7H, the contents of register B are O3H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents

1000H 51H
1001H A9H
1002H 03H

then after the execution of
OTIR

the HL register pair will contain 1003H, register B will contain zero, and a
group of bytes will have been written to the peripheral device mapped to I/O
port address @7H in the following sequence:

51H
A9H
03H

222

INPUT AND OUTPUT GROUP

OUTD OUTput & Decrement
Operation: (C) ¢(HL), B¢B —1, HLOHL —1

Format:
Mnemonic: OUTD Operands:

Object Code:
T T 1T T T 1
1 1 1 0 1 1 0 1 ED
A N N I Y
1 T T T T 1
I 0 1 0 1 O 1 1 AB
R R IR T
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (AQ through A7) of the address bus
to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Finally the register pair
HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if B —1=0; reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are O7H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory location
100QH are 59H, after the execution of

OuUTD

register B will contain OFH, the HL register pair will contain OFFFH, and the
byte S9H will have been written to the peripheral device mapped to I/O port
address O7H.

223

SERIES | EDITOR/ASSEMBLER

OTDR OUTput Decrement & Repeat
Operation: (C) ¢(HL), BB —1, HLOHL —1

Format:

Mnemonic: OTDR Operands:

Object Code:

T 1T 1T T T 1
1 1 1 0 1t 1 0 1 ED
[S I O O
T T T T T 1
1 0 t 1 1 0 1 1 BB
Lo
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (AQ through A7) of the address bus
to select the I/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL is
decremented and if the decremented B register is not zero, the Program Counter
(PC) is decremented by 2 and the instruction is repeated. If B has gone to zero,
the instruction is terminated. Note that if B is set to zero prior to instruction
execution, the instruction will output 256 byte of data. Also, interrupts will be
recognized after each data transfer.

If B#0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHz ET.: 5.25
If B=0:

M cycles: 4 T states: 16(4,5,3.4) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected

224

INPUT AND OUTPUT GROUP
00 A 5557 R TR 5

Example:

If the contents of register C are 07H, the contents of register B are O3H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents

OFFEH S1H

OFFFH A9H

1000H 03H

then after the execution of
OTDR

the HL register pair will contain QFFDH, register B will contain zero, and a
group of bytes will have been written to the peripheral device mapped to I/O
port address O7H in the following sequence:

03H
AS9H
51H

225

APPENDIX

Appendix A /Using the TPSRC Utility
(Disk Systems Only)

This utility allows disk systems to:

A. Read the source tapes created by the tape version of the Editor/Assembler,
and copy these to disk.

B. Copy a disk object file (machine-language program) onto tape in the
“‘SsYSTEM’’ format.

Under TRSDOS READY, type TPSRC (ENTER). The program will start and ask you to
select either (1) source tape input or (2) object tape output.

Source Tape Input

If you type 1 (ENTER), the program will tell you to get the recorder ready. Get
your recorder ready to play the source tape (created by the w command of the
Tape Editor/Assembler). Then press (ENTER).

TPSRC will read the tape and create a disk file with the same name as the tape
and with the extension /SRC. The resultant file may be loaded by the Disk Editor/
Assembler (L command).

Object Tape Output

If you type 2 (ENTER), the program will ask you for the name of the disk file.
(The file must be in the correct program format, as created by the Disk Editor/
Assembler A command.) Type in the file name and press (ENTER).

Next, TpsRC will prompt you to get the recorder ready. Using a blank tape,
prepare the recorder to record. Then press (ENTER). TpsRC will then write out the
object tape. The object tape will be given the name of the disk object file.

The resultant tape is in the SYSTEM format, and may be loaded according to the
instructions in Section 5.

227

SERIES | EDITOR/ASSEMBLER

Appendix B/Model I Subroutines

These are subroutines which are in the Read Only Memory (ROM) of your Model
I Level I or Level II Basic Computer. You can call them using an assembly
language program.

The left-hand column lists the subroutines. The next columns demonstrate
example assembly language programs which call these subroutines.

If you have a Model I disk system, you can also call subroutines which are a
part of your TRs-80 Disk Operating System (TRsDOS). These are listed in your
Model I *‘TrsDOS Disk Basic Reference Manual.”’

The Model 11l BAsIC subroutines are listed in the *‘Trs-80 Model I1I Operation
and BASIC Language Reference Manual.’ (See the Appendix of the Operation
Section.) The Model I1I TRSDOS subroutines are in the ‘‘Technical Information”’
of the ‘*‘Model III Disk System’s Owners Manual.’

Level I BASIC Subroutines

KEYBOARD SCAN WATT CALL PB4RH iSCAN
A-register contains input JR ZIWAIT iZ= 1 IF KB CLEAR
byte; input byte is displayed
at current cursor.

DISPLAY BYTE PUSH DE FMUST SAUE
AT CURSOR PUSH IY i DE & IV
LD AZ0H iBYTE TO DISPLAY
RST 10H iDISPLAY BYTE
POP IY IRESTORE
POP DE i DE & IY
TURN ON CALL BFESH TURN ON CASSETTE
CASSETTE

On board cassette is
turned on via remote plug

SAVE MEMORY CALL @FESH STURN ON CASSETTE

TO CASSETTE LD HL »70@H iSTART ADDRESS
Cassette is LD DE»710@H LAST+1 ADDRESS
turned off CALL @F4BH PGAVE IT

228

APPENDIX
==

LOAD MEMORY FROM CALL PEF4H sTURN ON & READ
CASSETTE
On return
HL = last + 1 address
Z =0if
checksum error
Z =1if

checksum OK
Cassette is
turned off

RETURN TO Press Reset
LEVEL I BASIC JP 2 FPOWER UP
JP P1C9H iRE-ENTRY WITH READY

Level II BASIC Subroutines

TURN ON CURSOR PUSH DE iMUST SAVE
CHARACTER . PUSH Iy i DE & IV
LD ABEH i@EH IS CURSOR BYTE
CALL 33H iDISPLAY ROUTINE
POP IY iRESTORE
POP DE i DE & IY
KEYBOARD SCAN PUSH DE iMUST SAVE
A-register contains byte when PUSH Iy i DE & IVY
loop falls through. AGN CALL ZBH iSCAN ROUTINE
Byte is not displayed on OR A iA=0 IF KB CLEAR
Screen! JR ZyAGN iBRANCH IF NO BYTE
POP IY iRESTORE
POP DE i DE & IY
DISPLAY BYTE PUSH DE iMUST SAVE
AT CURSOR PUSH LY i DE & IY
LD Ay20H iBYTE TO DISPLAY
CALL 33H iDISPLAY
POP IY iRESTORE
POP DE i DE & IY
;A-REGISTER SPECIFIES CASSETTE (0 OR 1)
DEFINE DRIVE LD A0 iON BOARD CASSETTE
CALL B212H iDEFINE DRIVE
WRITE LEADER CALL @287H

AND SYNC BYTE

TURN OFF CASSETTE CALL @1F8H

229

SERIES | EDITOR/ASSEMBLER
S

SAVE MEMORY LD A0 ;ON BOARD CASSETTE

TO CASSETTE CALL B212H iDEFINE DRIVE
User must CALL 264H often CALL 0287H JWRITE LEADER
enough to keep up with 500 LD A+ Z20H iBYTE TO RECORD
baud. Timing is automatic. CALL DZG4H FOUTPUT BYTE

CALL @1F8H iCASSETTE OFF

LOOK FOR LEADER CALL B296H

AND SYNC BYTE

LOAD MEMORY FROM LD AD iDEFINE DRIVE

CASSETTE CALL BZ1ZH iFIND SYNC BYTE
Your program must CALL CALL BZ9GH JREAD ONE BYTE
0235H often enough to keep CALL PZ35H

up with 500 baud, and must
do its own checksum if
desired. A-register contains
byte read. The user must turn
off the cassette (CALL
01F8H) when all bytes have

been read.
RETURN TO Press RESET
LEVEL II BASIC JP @ LIKE POWER UP
JP 1A19H iRE-ENTRY
OUTPUT TO LINE PRINTER PUT ASCII BYTE IN
(LEVEL II ONLY) sA-REGISTER AND CALL
PRTOUT
sBUSY CONDITION TESTE
FOR
PRTOUT WA iSAVE REGS.
LD HL +37E8H sLOAD LP POINTER
IN HL
PRTLPB LD D+ (HL) sLOAD LP STATUS BYTE
BIT 74D :IS5 THE PRINTER
JP NZsPRTLPB BUSY?
LD (HL) sA
KR yOUTPUT BYTE TO
RET PRINTER

230

APPENDIX
e

Appendix C/Z-80 Status Indicators (Flags)

The flag register (F and F’) supplies information to the user regarding the status
of the z-80 at any given time. The bit positions for each flag are shown below:

7 6 5 4 3 2 1 0

slzlxIulx]pvINn]c]

WHERE:

C = CARRY FLAG

N = ADD/SUBTRACT FLAG
P/V = PARITY/OVERFLOW FLAG
H = HALF-CARRY FLAG

Z = ZERO FLAG

S = SIGN FLAG

X = NOT USED

Each of the two z-80 Flag Registers contains 6 bits of status information which are
set or reset by CpuU operations. (Bits 3 and 5 are not used.) Four of these bits are
testable (c.p/v,Z and s) for use with conditional jump, call or return instructions.
Two flags are not testable (H,N) and are used for BcD arithmetic.

Carry Flag (C)

The carry bit is set or reset depending on the operation begin performed. For ‘ADD’
instructions that generate a carry and ‘SUBTRACT’ instructions that generate no bor-
row, the Carry Flag will be set. The Carry Flag is reset by an ADD that does not
generate a carry and a ‘SUBTRACT’ that generates a borrow. This saved carry facil-
itates software routines for extended precision arithmetic. Also, the ‘DAA’ instruc-
tion will set the Carry Flag if the conditions for making the decimal adjustment
are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the
LsB and MsB for any register or memory location. During instructions RLCA, RLC’S
and SLA’s, the carry contains the last value shifted out of bit 7 of any register or
memory location. During instructions RRCA, RRC’s, SRA’s and SRL’S the carry con-
tains the last value shifted out of bit O of any register or memory location.

For the logical instructions AND’s, OR’s and XOR’s, the carry will be reset.
The Carry Flag can also be set (SCF) and complemented (CCF).
Add/Subtract Flag (N)

This flag is used by the decimal adjust accumulator instruction (DAA) to distingiush
between ‘ADD’ and ‘SUBTRACT, instructions. For all ‘ADD’ instructions, N will be
set to a ‘0. For all ‘SUBTRACT’ instructions, N will be set toa ‘1.’

231

SERIES | EDITOR/ASSEMBLER
T

Parity/Overflow Flag (P/V)
This flag is set to a particular state depending on the operation being performed.

For arithmetic operations, this flag indicates an overflow condition when the result
in the Accumulator is greater than the maximum possible number (+ 127) or is
less than the minimum possible number (— 128). This overflow condition can be
determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause overflow. When add-
ing operands with like signs and the result has a different sign, the overflow flag
is set. For example:

+120 = 0111 1000 ADDEND
+ 105 = 0110 1001 AUGEND
+225 1110 0001 (—95) SUM

The two numbers added together has resulted in a number that exceeds + 127 and
the two positive operands has resulted in a negative number (— 95) which is incor-
rect. The overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs. Operands of like
sign will never cause overflow. For example:

+127 0111 1111 MINUEND
(—)—64 1100 0000 SUBTRAHEND
+191 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative, giving an incorrect
difference. Overflow is therefore set.

Another method for predicting an overflow is to observe the carry into and out of
the sign bit. If there is a carry in and no carry out, or if there is no carry in and a
carry out, then overflow has occurred.

This flag is also used with logical operations and rotate instructions to indicate the
parity of the result. The number of ‘1’ bits in a byte are counted. If the total is odd,
‘opD’ parity (p=0) is flagged. If the total is even, ‘EVEN’ parity is flagged (p=1).

During search instructions (Cp1,CPIR,CPD,CPDR) and block transfer instructions
(LDLLDIR,LDD,LDDR) the P/v flag monitors the state of the byte count register (BC).
When decrementing, the byte counter results in a zero value, the flag is reset to 0,
otherwise the flag is a Logic 1.

During LD A1 and LD A R instructions, the p/v flag will be set with the contents of
the interrupt enable flip-flop (1FF2) for storage or testing.

When inputting a byte from an 1/0 device, IN r,(C), the flag will be adjusted to
indicate the parity of the data.

The Half Carry Flag (H)

The Half Carry Flag (H) will be set or reset depending on the carry and borrow
status between bits 3 and 4 of an 8-bit arithmetic operation. This flag is used by

232

APPENDIX

the decimal adjust accumulator instruction (DAA) to correct the result of a packed
BCD add or subtract operation. The H flag will be set (1) or rest (0) according to the
following table:

H ADD SUBTRACT

1 There is a carry from There is no borrow from
Bit 3 to Bit 4 Bit 4

0 There is no carry from There is a borrow from
Bit 3 to Bit 4 Bit 4

The Zero Flag (Z)

The Zero Flag (z) is set or reset if the result generated by the execution of
certain instructions is a zero.

For 8-bit arithmetic and logical operations, the z flag will be set to a ‘1’ if the
resulting byte in the Accumulator is zero. If the byte is not zero, the z flag is
reset to ‘0.

For compare (search) instructions, the z flag will be set to a ‘1’ if a comparison
is found between the value in the Accumulator and the memory location pointed
to by the contents of the register pair HL.

When testing a bit in a register or memory location, the z flag will contain the
complemented state of the indicated bit (see Bit b,s).

When inputting or outputting a byte between a memory location and an vo
device (INLIND;oUTI and OUTD), if the result of B-1 is zero, the z flag is set,
otherwise it is reset. Also for byte inputs from 10 devices using IN 1,(C), the z
Flag is set to indicate a zero byte input.

The Sign Flag (S)

The Sign Flag (s) stores the state of the most significant bit of the Accumulator
(Bit 7). When the zgo performs arithmetic operations on signed numbers, binary
two’s complement notation is used to represent and process numeric
information. A positive number is identified by a ‘0’ in bit 7. A negative number
is identified by a ‘1”. The binary equivalent of the magnitude of a positive
number is stored in bits O to 6 for a total range of from 0 to 127. A negative
number is represented by the two’s complement of the equivalent positive
number. The total range for negative numbers is from —1 to — 128.

When inputting a byte from a vo device to a register, IN r,(C) the s flag will
indicate either positive ($=0) or negative (s=1) data.

233

SERIES | EDITOR/ASSEMBLER

Appendix D
Numeric List of Instruction Set

Following is a listing of object codes in numerical order in column two followed by the nmemonic or source
statement in column four.

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0000 00 1 NOP 004E 35 54 DEC (HL)
0001 018405 2 LD BC,NN 004F 3620 55 LD (HL),N
0004 02 3 LD (BC),A 0051 37 56 SCF

0005 03 4 INC BC 0052 382E 57 JR C,DIS
0006 04 5 INCB 0054 39 58 ADD HL,SP
0007 05 6 DEC B 0055 3A8405 59 LD A,(NN)
0008 0620 7 LD BN 0058 3B 60 DEC SP
000A 07 8 RLCA 0059 3C 61 INC A
000B 08 9 EX AFAF’ 005A 3D 62 DEC A
000C 09 10 ADD HL,BC 005B 3E20 63 LD AN
000D 0OA 11 LD A, (BC) 005D 3F 64 CCF

000E OB 12 DEC BC 005E 40 65 LD B,B
000F 0C 13 INCC 005F 41 66 LD B,C
0010 OD 14 DEC C 0060 42 67 LD B.D
0011 OE20 15 LD C.N 0061 43 68 LD B.E
0013 OF 16 RRCA 0062 44 69 LD B,H(NN)
0014 102E 17 DIJNZ DIS 0063 45 70 LDB,L
0016 118405 18 LD DE.NN 0064 46 71 LD B,(HL)
0019 12 19 LD (DE),A 0065 47 72 LD B,A
00IA 13 20 INC DE 0066 48 73 LD C.B
001B 14 21 INCD 0067 49 74 LD C,C
001C 15 22 DEC D 0068 4A 75 LD C,D
001D 1620 23 LD D,N 0069 4B 76 LD C,E
001F 17 24 RLA 006A 4C 77 LD CH
0020 182E 25 JR DIS 006B 4D 78 LDC,L
0022 19 26 ADD HL,DE 006C 4E 79 LD C.(HL)
0023 1A 27 LD A.(DE) 006D 4F 80 LDC,A
0024 1B 28 DEC DE 006E 50 81 LD D.,B
0025 1C 29 INCE 006F 51 82 LD D,C
0026 ID 30 DECE 0070 52 83 LD D.D
0027 1E20 31 LD E.N 0071 53 84 LD D.E
0029 IF 32 RRA 0072 54 85 LD D.H
002A 202E 33 JR NZ,DIS 0073 55 86 LDD.,L
002C 218405 34 LD HL,NN 0074 56 87 LD D,(HL)
002F 228405 35 LD (NN),HL 0075 57 88 LD D,A
0032 23 36 INC HL 0076 58 89 LD E.,B
0033 24 37 INC H 0077 59 90 LDE,C
0034 25 38 DEC H 0078 SA 91 LD E,D
0035 2620 39 LD H,N 0079 5B 92 LD E.E
0037 27 40 DAA 007A 5C 93 LD EH
0038 282E 41 IR Z,DIS 007B 5D 94 LDE.L
003A 29 42 ADD HL,HL 007C SE 95 LD E,(HL)
003B 2A8405 43 LD HL,(NN) 007D 5F 96 LD E,A
003E 2B 44 DEC HL 007E 60 97 LD H,B
003F 2C 45 INCL 007F 6l 98 LD H,C
0040 2D 46 DECL 0080 62 99 LD H,D
0041 2E20 47 LD L,N 0081 63 100 LD H.E
0043 2F 48 CPL 0082 64 101 LD H,H
0044 302E 49 JR NC,DIS 0083 65 102 LD H,L
0046 318405 50 LD SP,NN 0084 66 103 LD H,(HL)
0049 328405 51 LD (NN),A 0085 67 104 LD H.A
004C 33 52 INC SP 0086 68 105 LDL,B
004D 34 53 INC (HL) 0087 69 106 LDL,C

234

APPENDIX
e S

OC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
)88 6A 107 LDL.D 00C5 A7 168 AND A

)89 6B 108 LD L.E 00C6 A8 169 XOR B

J8A 6C 109 LD L.H 00C7 A9 170 XOR C

8B 6D 110 LD L.L 00C8 AA 171 XOR D

)BC 6E 111 LD L,(HL) 00C9 AB 172 XOR E

8D 6F 112 LD L.A 00CA AC 173 XOR H

)8E 70 113 LD (HL),B 00CB AD 174 XOR L

BE 71 114 LD (HL).C 00CC AE 175 XOR (HL)
90 72 115 LD (HL),D 00CD AF 176 XOR A
9173 116 LD (HL).E 00CE BO 177 OR B

)92 74 117 LD (HL),H 00CF BI1 178 OR C

)93 75 118 LD (HL),L 00D0O B2 179 OR D

)94 76 119 HALT 00Dl B3 180 ORE

95 77 120 LD (HL),A 0002 B4 181 OR H

)96 78 121 LD A,B 00D3 BS 182 OR L

97 79 122 LD A.C 00D4 B6 183 OR (HL)
)98 TA 123 LD AD 00D5 B7 184 OR A

)99 7B 124 LD AE 00D6 B8 185 CPB

VA T7C 125 LD AH 00D7 B9 186 CpPC

9B 7D 126 LD AL 00D8 BA 187 CPD

)9C TE 127 LD A,(HL) 00D9 BB 188 CPE

9D TF 128 LD A A 00DA BC 189 CPH

9E 80 129 ADD A.B 00DB BD 190 CPL

OF 81 130 ADD A,C 00DC BE 191 CP (HL)
JAO 82 131 ADD A,D 00DD BF 192 CP A

JA1 83 132 ADD AE 00DE CO 193 RET NZ
JA2 84 133 ADD A H 00DF Cl1 194 POP BC
JA3 85 134 ADD AL 00EO C28405 195 JP NZ, NN
JA4 86 135 ADD A (HL) 00E3 C38405 196 JP NN

JAS 87 136 ADD A A 00E6 (48405 197 CALL NZ NN
JA6 88 137 ADC A,B 00E9 C5 198 PUSH BC
JAT 89 138 ADC A.C 00EA (€620 199 ADD A.N
JA8 8A 139 ADC A.D 00EC C7 200 RST O

JAY 8B 140 ADC AE 00ED C8 201 RET Z

JAA 8C 141 ADC AH 00EE C9 202 RET

JAB 8D 142 ADC AL 00EF CAB8405 203 JP ZNN
JAC 8E 143 ADC A,(HL) 00F2 CC8405 204 CALL Z NN
JAD 8F 144 ADC A A 00F5 CD8405 205 CALL NN
JAE 90 145 SUB B 00F8 CE20 206 ADC AN
JAF 91 146 SUB C 00FA CF 207 RST 8

BO 92 147 SUBD 00FB DO 208 RET NC

Bl 93 148 SUBE 00FC DI 209 POP DE

B2 94 149 SUB H 00FD D28405 210 JP NC,NN
B3 95 150 SUBL 0100 D320 211 OUT ,NA
B4 96 151 SUB (HL) 0102 D48405 212 CALL NC.,NN
BS 97 152 SUB A 0105 D5 213 PUSH DE
B6 98 153 SBC A,B 0106 D620 214 SUB N

B7 99 154 SBCA,C 0108 D7 215 RST 10H
B8 9A 155 SBCA,D 0109 D8 216 RET C

B9 9B 156 SBC AE 010A D9 217 EXX

BA 9C 157 SBC AH 010B DAS8405 218 JP C.NN
BB 9D 158 SBCA,L 010E DB20 219 IN AN

BC 9E 159 SBC A,(HL) 0110 DC8405 220 CALL C.NN
BD 9F 160 SBC AA 0113 DE20 221 SBC AN
BE A0 161 AND B 0115 DF 222 RST 18H
BF Al 162 AND C 0116 EO 223 RET PO

Cco0 A2 163 AND D 0117 EI 224 POP HL

Cl A3 164 -ANDE 0118 E28405 225 JP PO,NN
C2 A4 165 AND H 011B E3 226 EX (SP),HL
C3 A5 166 AND L 011C E48405 227 CALL PO,NN
IC4 A6 167 AND (HL) OIlF ES 228 PUSH HL

235

SERIES | EDITOR/ASSEMBLER
(S E e

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0120 E620 229 AND N 0192 CB25 290 SLAL
0122 E7 230 RST 20H 0194 CB26 291 SLA (HL)
0123 E8 231 RET PE 0196 CB27 292 SLA A
0124 E9 232 JP (HL) 0198 CB28 293 SRA B
0125 EAB405 233 IP PE,NN 019A CB29 294 SRAC
0128 EB 234 EX DE.HL 019C CB2A 295 SRAD
0129 EC8405 235 CALL PE,NN 019E CB2B 296 SRAE
012C EE20 236 XOR N 01A0 CB2C 297 SRAH
012E EF 237 RST 28H 01A2 CB2D 298 SRAL
012F FO 238 RET P 01A4 CB2E 299 SRA (HL)
0130 Fl 239 POP AF 01A6 CB2F 300 SRA A
0131 F28405 240 JP P.NN 01A8 CB38 301 SRL B
0134 F3 241 DI 0IAA CB39 302 SRLC
0135 F48405 242 CALL P,NN 0IAC CB3A 303 SRL D
0138 F5 243 PUSH AF 0IAE CB3B 304 SRLE
0139 F620 244 OR N 01B0 CB3C 305 SRLH
013B F7 245 RST 30H 01B2 CB3D 306 SRLL
013C F8 246 RET M 01B4 CB3E 307 SRL (HL)
013D F9 247 LD SP.HL 01B6 CB3F 308 SRL A
O013E FAB8405 248 JP M,NN 01B8 CB40 309 BIT 0,B
0141 FB 249 El 0IBA CB4l 310 BIT 0,C
0142 FC8405 250 CALL M,NN 01BC CB42 311 BIT 0.D
0145 FE20 251 CPN 0IBE CB43 312 BIT 0.E
0147 FF 252 RST 38H 01CO CB44 313 BIT 0,H
0148 CBO0O 253 RLC B 01C2 CB45 314 BITO,L
014A CBOI 254 RLC C 01C4 CB46 315 BIT 0,(HL)
014C CBO02 255 RLC D 01C6 CB47 316 BIT 0,A
014E CBO3 256 RLCE 01C8 CB48 317 BIT 1,B
0150 CBO4 257 RLC H 0ICA CB49 318 BIT 1,C
0152 CBOS 258 RLCL 01CC CB4A 319 BIT 1.D
0154 CBO6 259 RLC (HL) 0ICE CB4B 320 BIT 1,E
0156 CBO7 260 RLC A 01D0 CB4C 321 BIT 1LH
0158 CBO8 261 RRC B 01D2 CB4D 322 BIT I,L
015A CB09 262 RRC C 01D4 CB4E 323 BIT 1,(HL)
015C CBOA 263 RRC D 01D6 CB4F 324 BIT 1,A
0ISE CBOB 264 RRCE 0ID8 CB30 325 BIT 2,B
0160 CBOC 265 RRCH 0IDA CBSI 326 BIT 2,C
0162 CBOD 266 RRCL 0IDC CB52 327 BIT 2,.D
0164 CBOE 267 RRC (HL) 0IDE CBS53 328 BIT 2,E
0166 CBOF 268 RRC A 0IE0 CB54 329 BIT 2,H
0168 CBI10 269 RL B 01E2 CB5S 330 BIT 2,L
016A CBII 270 RL C 01E4 CB56 331 BIT 2,(HL)
016C CBI2 271 RL D 0IE6 CBS7 332 BIT 2,A
016E CBI13 272 RLE 0IE8 CB38 333 BIT 3,B
0170 CBI14 273 RL H 0IEA CB59 334 BIT 3,C
0172 CBI5 274 RLL 0IEC CB5A 335 BIT 3.D
0174 CBIl6 275 RL (HL) OIEE CB3B 336 BIT 3,E
0176 CB17 276 RL A 01F0 CB3C 337 BIT 3,H
0178 CBI8 277 RR B 01F2 CBSD 338 BIT 3,L
017A CBI19 278 RR C 0IF4 CBSE 339 BIT 3,(HL)
017C CBIA 279 RR D 0IF6 CBSF 340 BIT 3,A
017E CBIB 280 RRE 01F8 CB60 341 BIT 4,B
0180 CBIC 281 RR H 0IFA CB6l 342 BIT 4,C
0182 CBID 282 RR L 0IFC CB62 343 BIT 4,D
0184 CBIE 283 RR (HL) O0IFE CB63 344 BIT 4,E
0186 CBIF 284 RR A 0200 CB64 345 BIT 4,H
0188 CB20 285 SLA B 0202 CB65 346 BIT 4,L
018A CB21 286 SLA C 0204 CB66 347 BIT 4,(HL)
018C CB22 287 SLAD 0206 CB67 348 BIT 4,A
OI8E CB23 288 SLAE 0208 CB68 349 BIT 5,B
0190 CB24 289 SLAH 020A CB69 350 BIT 5,C

236

256

284

OBJ CODE
CB6A
CB6B
CB6C
CB6D
CB6E
CBO6F
CB70
CB71
CB72
CB73
CB74
CB75
CB76
CB77
CB78
CB79
CB7A
CB7B
CB7C
CB7D
CB7E
CB7F
CB80
CB81
CB82
CB83
CBg&4
CB85
CB86
CB87
CB88
CB89
CB8A
CBS8B
CB8C
CB8D
CB8E
CBSF
CB90
CBII
CB92
CB93
CBY%
CB95
CB96
CB97
CB98
CB99
CB9A
CB9B
CB9C
CB9D
CBOE
CBYF
CBAO
CBAI
CBA2
CBA3
CBA4
CBAS
CBA6

STMT
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

380

382

391
392
393
394

411

SOURCE STATEMENT

BIT 5,.D
BIT 5.E
BIT 5,H
BIT 5,L
BIT 5,(HL)
BIT 5,A
BIT 6,B
BIT 6,C
BIT 6,D
BIT 6,E
BIT 6 .H
BIT 6,L
BIT 6,(HL)
BIT 6,A
BIT 7,B
BIT 7,C
BIT 7,D
BIT 7.E
BIT 7.H
BIT 7,.L
BIT 7,(HL)
BIT 7,A
RES 0,.B
RES 0,C
RES 0,.D
RES 0,.E
RES 0,H
RES 0,L
RES 0,(HL)
RES 0,A
RES 1,B
RES 1,C
RES 1,.D
RES 1,.E
RES 1,H
RES 1,L
RES 1,(HL)
RES 1,A
RES 2,B
RES 2,C
RES 2,.D
RES 2,.E
RES 2,H
RES 2,
RES 2,(HL)
RES 2,A
RES 3,B
RES 3,C
RES 3,.D
RES 3.E
RES 3,H
RES 3,L
RES 3,(HL)
RES 3,A
RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4, H
RES 4,L
RES 4,(HL)

LOC
0286
0288
028A
028C
028E
0290

0296

02D2
02D4
02D6
02D8
02DA
02DC
02DE
02E0
02E2
02E4
02E6
02E8
02EA
02EC
02EE
02F0
02F2
02F4
02F6
02F8
02FA
02FC
02FE

OBJ CODE STMT

CBA7
CBA8
CBA9
CBAA
CBAB
CBAC
CBAD
CBAE
CBAF
CBBO
CBBI
CBB2
CBB3
CBB4
CBBS
CBB6
CBB7
CBB8
CBB9
CBBA
CBBB
CBBC
CBBD
CBBE
CBBF
CBCO
CBCl1
CBC2
CBC3
CBC4
CBCS
CBC6
CBC7
CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CBCE
CBCF
CBDO
CBDI
CBD2
CBD3
CBD4
CBD5
CBD6
CBD7
CBD8
CBD9
CBDA
CBDB
CBDC
CBDD
CBDE
CBDF
CBEO
CBEI
CBE2
CBE3

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
47

APPENDIX

RES 4 ,A
RES 5,B
RES 5,C
RES 5.D
RES 5.E
RES 5.H
RES 5,L
RES 5,(HL)
RES 5,A
RES 6,B
RES 6,C
RES 6.D
RES 6,E
RES 6,H
RES 6,L
RES 6,(HL)
RES 6,A
RES 7,B
RES 7,C
RES 7,.D
RES 7,E
RES 7,H
RES 7,L
RES 7,(HL)
RES 7,A
SET 0,B
SET 0,C
SET 0,.D
SET 0,E
SET 0,H
SET O,L
SET 0,(HL)
SET 0,A
SET 1,B
SET 1,C
SET 1.D
SET LLE
SET 1,H
SET 1,L
SET 1,(HL)
SET 1,LA
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET2,L
SET 2,(HL)
SET2,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3L
SET 3,(HL)
SET 3,A
SET 4,B
SET4,C
SET 4,D
SET 4,E

SOURCE STATEMENT

237

SERIES | EDITOR/ASSEMBLER
(e = e

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT

0300 CBE4 473 SET 4,H 0399 DDBEO5 534 CP (IX +IND)

0302 CBES 474 SET 4,L 039C DDEI 535 POP IX

0304 CBE6 475 SET 4,(HL) 039E DDE3 536 EX (SP).IX

0306 CBE7 476 SET 4,A 03A0 DDES 537 PUSH IX

0308 CBES8 477 SET 5.B 03A2 DDE9 538 1P (IX)

030A CBE9 478 SET 5.C 03A4 DDF9 539 LD SP.IX

030C CBEA 479 SET 5.D 03A6 DDCB0506 540 RLC (IX +IND)

030E CBEB 480 SET 5.E 03AA DDCBOSOE 541 RRC (IX + IND)

0310 CBEC 481 SET 5.H 03AE DDCBO516 542 RL (IX + IND)

0312 CBED 482 SET5.L 03B2 DDCBOSIE 543 RR (IX + IND)

0314 CBEE 483 SET 5.(HL) 03B6 DDCB0526 544 SLA (IX + IND)

0316- CBEF 484 SET 5,A 03BA DDCBOS2E 545 SRA (IX + IND)

0318 CBFO 485 SET 6,B 03BE DDCBOS3E 546 SRL (IX +IND)

031A CBFI 486 SET 6,C 03C2 DDCBO0546 547 BIT 0,(IX + IND)

031C CBF2 487 SET 6,D 03C6 DDCBOS4E 548 BIT 1,(IX + IND)

031E CBF3 488 SET 6.E 03CA DDCB0556 549 BIT 2,(IX + IND)

0320 CBF4 489 SET 6,H 03CE DDCBOSSE 550 BIT 3,(IX + IND)

0322 CBF5 490 SET 6.L 03D2 DDCBO0566 551 BIT 4,(IX + IND)

0324 CBF6 491 SET 6,(HL) 03D6 DDCBOS6E 552 BIT 5,(IX + IND)

0326 CBF7 492 SET 6,A 03DA DDCB0576 553 BIT 6,(IX + IND)

0328 CBF8 493 SET 7.B 03DE DDCBOS7TE 554 BIT 7,(IX + IND)

032A CBF9 494 SET 7.C 03E2 DDCBO0586 555 RES 0,(IX + IND)

032C CBFA 495 SET 7.D 03E6 DDCBOSSE 556 RES 1,(IX + IND)

032E CBFB 496 SET 7.E 03EA DDCB0596 557 RES 2,(IX + IND)

0330 CBFC 497 SET 7.H 03EE DDCBOS9E 558 RES 3,(IX + IND)

0332 CBFD 498 SET 7.L 03F2 DDCB05A6 539 RES 4,(IX + IND)

0334 CBFE 499 SET 7.(HL) 03F6 DDCBOSAE 560 RES 5.(IX + IND)

0336 CBFF 500 SET 7,A 03FA DDCBO5B6 561 RES 6,(IX + IND)

0338 DDO09 501 ADD IX.BC 03FE DDCBOSBE 562 RES 7,(IX + IND)

033A DDI19 502 ADD IX.DE 0402 DDCBOSC6 563 SET 0,(IX + IND)

033C DD218405 503 LD IX.NN 0406 DDCBOSCE 564 SET 1,(IX + IND)

0340 DD228405 504 LD (NN).IX 040A DDCBOSD6 565 SET 2,(IX + IND)

0344 DD23 505 INC IX 040E DDCBOSDE 566 SET 3,(IX + IND)

0346 DD29 506 ADD IX.IX 0412 DDCBOSE6 567 SET 4,(IX + IND)

0348 DD2A8405 507 LD IX.(NN) 0416 DDCBOSEE 568 SET 5,(IX + IND)

034C DD2B 508 DEC IX 041A DDCBOSF6 569 SET 6,(IX + IND)

034E DD3405 509 INC (IX + IND) 041E DDCBOSFE 570 SET 7,(IX + IND)

0351 DD3505 510 DEC (IX + IND) 0422 ED40 571 IN B,(C)

0354 DD360520 511 LD (IX +IND).N 0424 ED41 572 OUT (C).B

0358 DD39 512 ADD IX,SP 0426 ED42 573 SBC HL,BC

035A DD4605 513 LD B,(IX +IND) 0428 ED438405 574 LD (NN),BC

035D DD4E05 514 LD C.(IX + IND) 042C ED44 575 NEG

0360 DD35605 515 LD D,(IX + IND) 042E ED45 576 RETN

0363 DDSE05 516 LD E.(IX + IND) 0430 ED46 577 IMO

0366 DD6605 517 LD H,(IX -+ IND) 0432 ED47 578 LD LA

0369 DD6EOS 518 LD L.(IX+IND) 0434 ED48 579 INC,(C)

036C DD7005 519 LD (IX + IND),B 0436 ED49 580 OUT (0),C

036F DD7105 520 LD (IX +IND).C 0438 ED4A 581 ADC HL,BC

0372 DD7205 521 LD (IX + IND),D 043A ED4B8405 582 LD BC,(NN)
043E ED4D 583 RETI

0375 DD7305 52 LD (IX + IND),E EDAF IDRA

0378 DD7405 523 LD (IX + IND),H EDSE LD AR

037B DD7505 524 LD (IX+IND),L 0440 ED30 s34 IND.(C)

037E DD7705 525 LD (IX + IND).A 0442 EDSI 585 OUT (C).D

0381 DD7E0S 526 LD A,(IX+IND) 0444 ED52 586 SBC HL,DE

0384 DD8605 527 ADD A (IX+IND) 0446 ED538405 587 LD (NN),DE

0387 DDSEOS 528 ADC A,(IX +IND) 044A ED56 588 IMI

0384 DD9605 529 SUB (IX + IND) 044C ED57 589 LD A/l

038D DD9EO5 530 SBC A,(IX + IND) 044E ED58 590 INE,(C)

0390 DDA605 531 AND (IX + IND) 0450 ED59 591 OUT (C).E

0393 DDAEOS 532 XOR (IX + IND) 0452 EDSA 592 ADC HL.DE

0396 DDB605 533 OR (IX +IND) 0454 ED5B8405 593 LD DE,(NN)

238

APPENDIX

.O0C OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
)45A ED60 595 IN H,(C) 04DD FD7505 648 LD (IY +IND).L
)45C ED61 596 OUT (C),H 04E0 FD7705 649 LD (IY +IND),A
)45E ED62 597 SBC HL,HL 04E3 FD7EO5 650 LD A,(IY +IND)
1460 ED67 598 RRD 04E6 FD8605S 651 ADD A (IY + IND)
)462 ED68 599 INL.(C) 04E9 FDSEOS 652 ADC A,(IY + IND)
1464 ED69 600 OUT (C),L. 04EC FD9605 653 SUB-(IY + IND)
)466 ED6A 601 ADC HL,HL O04EF FDYEOS 654 SBC A,(IY +IND)
1468 ED6F 602 RLD 04F2 FDA605 653 AND (IY +IND)
46A ED72 603 SBC HL,SP 04F5 FDAEOS 656 XOR (1Y +IND)
146C ED738405 604 LD (NN),SP 04F8 FDB605 657 OR (IY + IND)
470 ED78 605 INA,C) 04FB FDBEOS 658 CP (IY + IND)
472 ED79 606 OUT (C).A 04FE FDE1 659 POP 1Y

474 EDTA 607 ADC HL,SP 0500 FDE3 660 EX (SP),IY

476 ED7B8405 608 LD SP,(NN) 0502 FDES 661 PUSHIY

M4TA EDAO 609 LDI 0504 FDE9 662 IP (1Y)

47C EDALI 610 CPl 0506 FDF9 663 LD SPIY

MTE EDA2 611 INI 0508 FDCBO0506 664 RLC (IY + IND)
1480 EDA3 612 OUTI 050C FDCBOSOE 665 RRC (IY +IND)
482 EDA8 613 LDD 0510 FDCBO516 666 RL (IY +IND)
484 EDA9 614 CPD 0514 FDCBOSIE 667 RR (IY + IND)
1486 EDAA 615 IND 0518 FDCBO0526 668 SLA (IY +IND)
488 EDAB 616 OUTD 051C FDCBOS2E 669 SRA (IY +IND)
148A EDBO 617 LDIR 0520 FDCBOS3E 670 SRL (IY + IND)
48C EDBI 618 CPIR 0524 FDCBO0546 671 BIT 0,(IY +IND)
M48E EDB2 619 INIR 0528 FDCBOS4E 672 BIT 1,(IY + IND)
1490 EDB3 620 OTIR 052C FDCBO0556 673 BIT 2,(IY + IND)
1492 EDBS 621 LDDR 0530 FDCBOSSE 674 BIT 3,(IY + IND)
1494 EDB9 622 CPDR 0534 FDCB0566 675 BIT 4,(1Y + IND)
1496 EDBA 623 INDR 0538 FDCBO5S6E 676 BIT 5,(1Y +IND)
498 EDBB 624 OTDR 053C FDCB0576 677 BIT 6,(1Y + IND)
M49A FD09 625 : ADD IY,BC 0540 FDCBOSTE 678 BIT 7,(1Y + IND)
49C FDI9 626 ADD 1Y,DE 0544 FDCBO0586 679 RES 0,(IY + IND)
M9E FD218405 627 LD IY.NN 0548 FDCBOSSE 680 RES 1,(IY +IND)
A2 FD228405 628 LD (NN),IY 054C FDCB0596 681 RES 2,(IY + IND)
J4A6 FD23 629 INCTY 0550 FDCBOS9E 682 RES 3,(IY + IND)
M4A8 FD29 630 ADDIY,IY 0554 FDCBO5A6 683 RES 4,(IY + IND)
MAA FD2A8405 631 LD IY,(NN) 0558 FDCBOSAE 684 RES 5.(IY + IND)
MAE FD2B 632 DECIY 055C FDCBO5B6 685 RES 6,(IY + IND)
}4BO FD3405 633 INC (IY + IND) 0560 FDCBOSBE 686 RES 7,(IY + IND)
14B3 FD3505 634 DEC (IY +IND) 0564 FDCBO5C6 687 SET 0,(IY +IND)
}4B6 FD360520 635 LD (IY +IND).N 0568 FDCBOSCE 688 SET 1,(IY + IND)
M4BA FD39 636 ADD 1Y,SP 056C FDCBO5D6 689 SET 2,(IY + IND)
M4BC FD4605 637 LD B,(IY +IND) 0570 FDCBOSDE 690 SET 3,(IY +IND)
M4BF FD3EOS 638 LD C,(IY +IND) 0574 FDCBOSE6 691 SET 4,(IY + IND)
M4C2 FD5605 639 LD D,(IY +IND) 0578 FDCBOSEE 692 SET 5,(IY +IND)
4C5 FDSEOS 640 LD E,(IY + IND) 057C FDCBO5F6 693 SET 6,(IY + IND)
M4C8 FD6605 641 LD H,(IY +IND) 0580 FDCBOSFE 694 SET 7,(IY + IND)
M4CB FD6EOS 642 LD L,(IY +IND) 0584 695 NN DEFS 2

MCE FD7005 643 LD (IY +IND),B 696 IND EQU 5

4D1 - FD7105 644 LD (IY +IND),C 697 M EQU 10H

4D4 FD7205 645 LD(IY +IND),D 698 N EQU 20H

4D7 FD7305 646 LD (IY +IND),E 699 DIS EQU 30H

MDA FD7405 647 LD (IY +IND),H 700 END

239

SERIES | EDITOR/ASSEMBLER
= e e e

Appendix E/Alphabetic List of Instruction Set

Following is an alphabetical listing of the nmemonic or source statement in column four. The object code is
shown in column two.

LOC OBJCODE STMT SOURCE STATEMENT LOC OBJCODE STMT SOURCE STATEMENT
0000 8E 1 ADC A,(HL) 005C CB42 56 BIT 0,D

0001 DDS8EOS 2 ADC A,(IX +IND) 00SE CB43 57 BIT 0,E

0004 FDB8EOS 3 ADC A,(IY +IND) 0060 CB44 58 BIT 0,H

0007 8F 4 ADC AA 0062 CB45 59 BIT oL

0008 88 5 ADC AB 0064 CB4E 60 BIT 1,(HL)

0009 89 6 ADC AC 0066 DDCBO54E 61 BIT 1,AX+IND)
000A 8A 7 ADC AD 006A FDCBO54E 62 BIT 1,(IY + IND)
000B 8B 8 ADC AE 006E CB4F 63 BIT 1,A

000C &C 9 ADC AH 0070 CB48 64 BIT 1,B

000D 8D 10 ADC AL 0072 CB49 65 BIT 1,C

000E CE20 11 ADC AN 0074 CB4A 66 BIT 1.D

0010 ED4A 12 ADC HL,BC 0076 CB4B 67 BIT LE

0012 EDSA 13 ADC HL,DE 0078 CB4C 68 BIT ILH

0014 ED6A 14 ADC HL,HL 007A CB4D 69 BIT 1L

0016 ED7A 15 ADC HL,SP 007C CBS6 70 BIT 2,(HL)

0018 86 16 ADD A,(HL) 007E DDCBO0556 71 BIT 2,(IX + IND)
0019 DD8605 17 ADD A,(IX+IND) 0082 FDCBO0556 72 BIT 2,(IY + IND)
001C FD8605 18 ADD A,(IY +IND) 0086 CB57 73 BIT 2,A

001F 87 19 ADD AA 0088 CBSO 74 BIT 2,B

0020 80 20 ADD AB 008A CBSI 75 BIT 2,C

0021 81 21 ADD AC 008C CBS2 76 BIT 2,D

0022 82 22 ADD AD 008E CBS3 77 BIT 2,E

0023 83 23 ADD AE 0090 CB54 78 BIT 2.H

0024 84 24 ADD AH 0092 CBSS 79 BIT 2,L

0025 85 25 ADD AL 0094 CBSE 80 BIT 3,(HL)

0026 C620 26 ADD AN 0096 DDCBO55E 81 BIT 3,(IX + IND)
0028 09 27 ADD HL,BC 009A FDCBO5SE 82 BIT 3,(IY +IND)
0029 19 28 ADD HL,DE 009E CBSF 83 BIT 3A

002A 29 29 ADD HL,HL 00A0 CB58 84 BIT 3,B

002B 39 30 ADD HL,SP 00A2 CB59 85 BIT 3,C

002C DD09 31 ADD IX,BC 00A4 CBSA 86 BIT 3,D

002E DDI19 32 ADD IX,DE 00A6 CBS5B 87 BIT 3E

0030 DD29 33 ADD IX,IX 00A8 CBSC 88 BIT 3H

0032 DD39 34 ADD IX,SP 00AA CBSD 89 BIT 3L

0034 FD09 35 ADD IY,BC 00AC CB66 90 BIT 4,(HL)

0036 FDI19 36 ADD 1Y,DE 00AE DDCBO0566 91 BIT 4,(IX+IND)
0038 FD29 37 ADD IY,1Y 00B2 FDCB0566 92 BIT 4,(IY +IND)
003A FD39 38 ADD IY,SP 00B6 CB67 93 BIT 4,A

003C A6 39 AND (HL) 00B8 CB60 94 BIT 4B

003D DDAG605 40 AND (IX+IND) 00BA CB6l 95 BIT 4,C

0040 FDA605 41 AND (IY + IND) 00BC CB62 96 BIT 4D

0043 A7 42 AND A 00BE CB63 97 BIT 4E

0044 A0 43 AND B 00CO CB64 98 BIT 4H

0045 Al 44 AND C 00C2 CB65 99 BIT 4L

0046 A2 45 AND D 00C4 CB6E 100 BIT 5,(HL)

0047 A3 46 AND E 00C6 DDCBO5S6E 101 BIT 5,(IX+IND)
0048 A4 47 AND H 00CA FDCBO56E 102 BIT 5,(IY + IND)
0049 AS 48 AND L 00CE CB6F 103 BIT 5,A

004A E620 49 AND N 00D0 CB68 104 BIT 5,B

004C CB46 50 BIT 0,(HL) 00D2 CB69 105 BIT 5,C

004E DDCB0546 51 BIT 0,(IX+IND) 00D4 CB6A 106 BIT 5D

0052 FDBC0546 52 BIT 0,(IY +IND) 00D6 CB6B 107 BIT 5.E

0056 CB47 53 BIT 0,A 00D8 CB6C 108 BIT 5,H

0058 CB40 54 BIT 0,B 00DA CB6D 109 BIT 5L

005A CB41 55 BIT 0,C 00DC CB76 110 BIT 6,(HL)

240

APPENDIX

128
129

130
131
132
133
134
135
136
138
13A
13C
13E
140
141
142
143
146
149
14A
14B
14C
14D
|4E
|4F
150
151
152
54
56

OBJ CODE
DDCBO0576
FDCBO0576
CB77
CB70
CB71
CB72
CB73
CB74
CB75
CB7E
DDCBOS7E
FDCBOS7E
CB7F
CB78
CB79
CB7A
CB7B
CB7C
CB7D
DC8405
FC8405
D48405
CD8405
C48405
F48405
EC8405
E48405
CC8405
3F

BE
DDBEOS
FDBEOS
BF

B8

B9

BA

BB

BC

BD
FE20
EDA9
EDB9
EDAI
EDB1
2F

27

35
DD3505
FD3505
D

05

0B

0D

15

1B

1D

25

2B
DD2B
FD2B
2D

STMT
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

SOURCE STATEMENT

BIT 6.(IX + IND)
BIT 6.(1Y + IND)
BIT 6.A

BIT 6.B

BIT 6,C

BIT 6.D

BIT 6,E

BIT 6,H

BIT 6,L

BIT 7,(HL)
BIT 7,(IX + IND)
BIT 7.(1Y + IND)
BIT 7.A

BIT 7.B

BIT 7.C

BIT 7.D

BIT 7,E

BIT 7.H

BIT 7L

CALL CNN
CALL M.NN
CALL NC,NN
CALL NN

CALL NZ NN
CALL P.NN
CALL PE,NN
CALL PO,NN
CALL Z,NN
CCF

Cp (HL)

CP (IX+IND)
CP (IY +IND)
CP A

CP B

CP C

CP D

CP E

Cp H

CP L

CP N

CPD

CPDR

CPI

CPIR

CPL

DAA

DEC (HL)

DEC (IX+IND)
DEC (IY +IND)
DEC A

DEC B

DEC BC

DEC C

DEC D

DEC DE

DEC E

DEC H

DEC HL

DEC IX

DEC 1Y

DEC L

LOC
0157
0158
0159
015B
015C
015D
015F
0161
0162
0163
0164
0165
0167
0169
016B
016D
016F
0171
0173
0175
0177
0179
017B
017C
017F
0182
0183
0184
0185
0186
0187
0188
0189
018A
018B
018D
018F
0190
0191
0193
0195
0197
0199
019A
019C
019E
01A1
01A4
01A7
01AA
01AD
01BO
01B3
01B6
01B9
01BB
01BD
01BF
01C1
01C3
01C4

OBJ CODE
3B

F3

102E
FB

E3
DDE3
FDE3
08

EB

D9

76
ED46
ED56
EDSE
ED78
DB20
ED40
ED48
EDSO
ED58
ED60
ED68
34
DD3405
FD3405
3C

04

03

e

14

13

1C

24

23
DD23
FD23
2C

33
EDAA
EDBA
EDA2
EDB2
E9
DDE9
FDE9
DA8405
FA8405
D28405
(38405
28405
F28405
EA8405
E28405
CA8405
382E
182E
302E
202E
282E
02

12

STMT
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

192
193
194
195
196
197

SOURCE STATEMENT
DEC SP
DI
DINZ DIS
El
EX (SP),HL
EX (SP),IX
EX (SP),1Y
EX AFAF
EX DE HL
EXX
HALT
IM 0
M 1
IM 2
IN AC)
IN AN
IN B.(C)
IN C.(O)
IN D.(C)
IN E.(C)
IN H.(C)
IN L.(C)
INC (HL)
INC (IX+IND)
INC (IY +IND)
INC A
INC B
INC BC
INC C
INC D
INC DE
INC E
INC H
INC HL
INC IX
INC 1Y
INC L
INC SP
IND
INDR
INI
INIR
Jp (HL)
JP (IX)
JP (1Y)
1P C,NN
P M,NN
P NC,NN
P NN
P NZ NN
P P.NN
P PE.NN
P PO,NN
P Z NN
JR C.DIS
JR DIS
JR NC.,DIS
JR NZ,DIS
JR Z,DIS
LD (BC),A
LD (DE),A

241

SERIES | EDITOR/ASSEMBLER

LOC OBJCODE STMT SOURCE STATEMENT LOC OBJCODE STMT SOURCE STATEMENT
01cs 7 233 LD (HL),A 024C FD4EO05 294 LD C,(IY +IND)
01Cc6 70 234 LD (HL),B 024F 4F 295 LD CA

01Cc7 71 235 LD (HL),C 0250 48 296 LD C.B

01cg 72 236 LD (HL),D 0251 49 297 LD C.C

01cy 73 237 LD (HL).E 0252 4A 298 LD C.D

0ICA 74 238 LD (HL),H 0253 4B 299 LD CE

01CB 75 239 LD (HL),L 0254 4C 300 LD CH

01CC 3620 240 LD (HL).N 0255 4D 301 LD CL

0ICE DD7705 241 LD (IX+IND),A 0256 OE20 302 LD CN

01Dl DD7005 242 LD (IX+IND),B 0258 56 303 LD D.(HL)

01D4 DD7105 243 LD (IX+IND),C 0259 DD5605 304 LD D.(IX+IND)
01D7 DD7205 244 LD (IX+IND),.D 025C FD5605 305 LD D.(IY +IND)
0IDA DD7305 245 LD (IX+IND)E 025F 57 306 LD D.A

01DD DD7405 246 LD (IX+IND),H 0260 50 307 LD D.B

01EO DD7505 247 LD (IX+IND),L 0261 sl 308 LD D.C

0l1E3 DD360520 248 LD (IX+IND),N 0262 52 309 LD D.D

O0IE7 FDT7705 249 LD (IY +IND),A 0263 53 310 LD D.E

0TEA FD7005 250 LD (IY +IND),B 0264 54 311 LD D.H

0IED FD7105 251 LD (IY +IND),C 0265 55 312 LD D.L

01F0 FD7205 252 LD (IY +IND),D 0266 1620 313 LD D.N

01F3 FD7305 253 LD (IY +IND).E 0268 ED5B8405 314 LD DE.(NN)
01F6 FD7405 254 LD (IY +IND),H 026C 118405 315 LD DE.NN

01F9 FD7505 255 LD (IY +IND),L 026F SE 316 LD E.(HL)

01FC FD360520 256 LD (IY +IND),N 0270 DDSEO5 317 LD E.(IX+IND)
0200 328405 257 LD (NN),A 0273 FDSEO5 318 LD E.(IY +IND)
0203 ED438405 258 LD (NN),BC 0276 SF 319 LD E.A

0207 ED538405 259 LD (NN),DE 0277 S8 320 LD E.B

020B 228405 260 LD (NN),HL 0278 59 321 LD EC

020E DD228405 261 LD (NN),IX 0279 SA 322 LD E.D

0202 FD228405 262 LD (NN),IY 027A SB 323 LD EE

0216 ED738405 263 LD (NN),SP 027B 5C 324 LD EH

021A 0A 264 LD A.(BO) 027C 5D 325 LD EL

021B 1A 265 LD A.(DE) 027D 1E20 326 LD ENN

021C 7E 266 LD A,(HL) 027F 66 327 LD H,(HL)

021D DDT7EOS 267 LD A(IX+IND) 0280 DD6605 328 LD H.(IX+IND)
0220 FD7EO0S 268 LD A(IY +IND) 0283 FD6605 329 LD H,(IY +IND)
0223 3A8405 269 LD A,(NN) 0286 67 330 LD HA

0226 7F 270 LD AA 0287 60 331 LD H.B

0227 78 271 LD A.B 0288 6l 332 LD H.C

0228 79 272 LD AC 0289 62 333 LD H.D

0229 7A 273 LD AD 028A 63 334 LD H.E

022A 7B 274 LD AE 028B 64 335 LD HH

022B 7C 275 LD AH 028C 65 336 LD HL

022C EDs7 276 LD Al 028D 2620 337 LD H.N

022E 7D 27 LD AL 028F 2A8405 338 LD HL.(NN)
022F 3E20 278 LD AN 0292 218405 339 LD HL.NN

0231 46 279 LD B,(HL) 0295 ED47 340 LD LA

0232 DD4605 280 LD B.(IX+IND) 0297 DD2A8405 341 LD IX,(NN)
0235 FD4605 281 LD B,(IY + IND) 029B DD218405 342 LD IX.NN

0238 47 282 LD B.A 029F FD2A8405 343 LD IY,(NN)
0239 40 283 LD B.B 02A3 FD218405 344 LD IY.NN

023A 41 284 LD B.C 02A7 6E 345 LD L,(HL)

023B 42 285 LD B.D 02A8 DD6EO5 346 LD L,(IX +IND)
023C 43 286 LD B.E 02AB FD6EO5 347 LD L,dY +IND)
023D 44 287 LD B.H 02AE 6F 348 LD LA

023E 45 288 LD B,.L 02AF 68 349 LD LB

023F 0620 289 LD B,N 02B0 69 350 LD L.C

0241 ED4B8405 290 LD BC,(NN) 02B1 6A 351 LD L.D

0245 018405 291 LD BC.NN 02B2 6B 352 LD LE

0248 4E 292 LD C,(HL) 02B3 6C 353 LD LH

0249 DDA4EO5 293 LD C,(IX+IND) 02B4 6D 354 LD LL

242

.0C
12B4
2B5

2B7
2BB
2BC
2BE
2C0
203
2C5

OBJ CODE STMT

6D
2E20
ED4F
ED7B8405
F9
DDF9
FDF9
318405
EDAS
EDBS
EDAO
EDBO
ED44

DDES
FDES
CB86
DDCBO0586
FDCBO0586
CB87
CB80

CB81
CB82
CB83
CB84
CB85
CBSE
DDCBOS8E

354
355

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

SOURCE STATEMENT

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES
RES

L.L
LN
R,A
SP.(NN)
SP.HL
SPIX
SPIY
SP,NN

(HL)
(IX+IND)
(IY +IND)

ZOIZImTUNOw >

0,(HL)
0,(IX+IND)
0,(IY +IND)
0,A

0,B

0,C

0D

0.E

0.H

0L

1,(HL)
1,(IX+IND)

LOC
0324
0328
032A
032C
032E
0330
0332
0334
0336
0338
033C
0340
0342
0344
0346
0348
034A
034C
034E
0350
0354
0358
035A
035C
035E
0360
0362
0364
0366
0368
036C
0370
0372
0374
0376
0378
037A
037C
037E
0380
0384
0388
038A
038C
038E
0390
0392
0394
0396
0398
039C
03A0
03A2
03A4
03A6
03A8
03AA
03AC
03AE
03B0O
03B4

OBJ CODE
FDCBOSSE
CBS8F
CBSS§
CB89
CBSA
CBS8B
CB8C
CB8D
CB96
DDCB0396
FDCBO0596
CBY7
CB90
CB9I1
CBY92
CB93
CBY%
CBYS
CBIE
DDCBOS9E
FDCBO59E
CBYF
CB98
CB99
CBY9A
CB9B
CB9C
CB9D
CBA6
DDCBO5A6
FDCBO5A6
CBA7
CBAO
CBAI
CBA2
CBA3
CBA4
CBAS
CBAE
DDCBOSAE
FDCBOSAE
CBAF
CBAS
CBAY
CBAA
CBAB
CBAC
CBAD
CBB6
DDCBO05B6
FDCBO5B6
CBB7
CBBO
CBBI
CBB2
CBB3
CBB4
CBB5
CBBE
DDCBOSBE
FDCBOSBE

STMT
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
42
430
431
432
433
434
435
436
437
438
439
440
441
442
443
b
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

465
466
467
468
469
470
471
472
473
474

APPENDIX

SOURCE STATEMENT
RES 1,(IY + IND)
RES 1L.A
RES 1.B
RES 1.C
RES 1.D
RES 1LE
RES I.H
RES I.L
RES 2,(HL)

RES 2,(IX+IND)
RES 2,(IY +IND)
RES 2A

RES 2B

RES 2,C

RES 2D

RES 2.E

RES 2.H

RES 2L

RES 3,(HL)

RES 3.(IX+IND)
RES 3,(IY +IND)
RES 3A

RES 3B

RES 3.C

RES 3D

RES 3.E

RES 3H

RES 3L

RES 4,(HL)

RES 4,(IX +IND)
RES 4,(IY +IND)
RES 4.A

RES 4B

RES 4,C

RES 4.D

RES 4,E

RES 4 H

RES 4L

RES 5,(HL)

RES 5,(IX+IND)
RES 5,(IY +IND)
RES 5.A

RES 5B

RES 5.C

RES 5D

RES 5.E

RES 5H

RES 5L

RES 6,(HL)

RES 6,(IX +IND)
RES 6,(IY +IND)
RES 6,A

RES 6,B

RES 6,C

RES 6,.D

RES 6.E

RES 6,H

RES 6,L

RES 7,(HL)

RES 7,(IX+IND)
RES 7.(IY + IND)

243

SERIES | EDITOR/ASSEMBLER

LOC OBJCODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
03B8 CBBF 475 RES 7,A 0436 CBOD 536 RRC L

03BA CBBS8 476 RES 7.B 0438 OF 537 RRCA

03BC CBBY9 477 RES 7.C 0439 ED67 538 RRD

03BE CBBA 478 RES 7.D 043B 7 539 RST 0

03C0 CBBB 479 RES 7.E 043C D7 540 RST 10H

03C2 CBBC 480 RES 7.H 043D DF 541 RST 18H

03C4 CBBD 481 RES 7,L 043E E7 542 RST 20H

03C6 C9 482 RET 043F EF 543 RST 28H

03C7 D8 483 RET C 0440 F7 544 RST 30H

03C8 F8 484 RET M 0441 FF 545 RST 38H

03C9 DO 485 RET NC 0442 CF 546 RST 08H

03CA CO 486 RET NZ 0443 9E 547 SBC A,(HL)
03CB FO 487 RET p 0444 DDYEOS 548 SBC A(IX+IND)
03CC ES8 488 RET PE 0447 FD9EO5 549 SBC A,(IY +IND)
03CD EO 489 RET PO 044A 9F 550 SBC AA

03CE C8 490 RET 4 044B 98 551 SBC AB

03CF ED4D 491 RETI 044C 99 552 SBC AC

03D1 ED45 492 RETN 044D 9A 553 SBC AD

03D3 CBIl6 493 RL (HL) 044E 9B 554 SBC AE

03D5 DDCBO516 494 RL (IX +IND) 044F 9C 555 SBC AH

03D9 FDCBO516 495 RL (IY + IND) 0450 9D 556 SBC AL

03DD CB17 496 RL A 0451 DE20 557 SBC AN

03DF CBI0 497 RL B 0453 ED42 558 SBC HL,BC

03El CBIl1 498 RL C 0455 EDS2 559 SBC HL.DE

03E3 CBI2 499 RL D 0457 ED62 560 SBC HL.HL

03ES (813 500 RL E 0459 EDT72 561 SBC HL,SP

03E7 CBl4 501 RL H 045B 37 562 SCF

03E9 CBIS 502 RL L 045C CBC6 563 SET 0,(HL)

03EB 17 503 RLA 045E DDCBO05C6 564 SET 0,(IX +IND)
03EC CBO6 504 RLC (HL) 0462 FDCBO05C6 565 SET 0,(IY + IND)
03EE DDCBO0506 505 RLC (IX+IND) 0466 CBC7 566 SET 0,A

03F2 FDCB0506 506 RLC (IY +IND) 0468 CBCO 567 SET 0,B

03F6 CBO7 507 RLC A 046A CBCI 568 SET 0.C

03F8 CB0OO 508 RLC B 046C CBC2 569 SET 0D

03FA CBOI 509 RLC C 046E CBC3 570 SET 0.E

03FC CBO2 510 RLC D 0470 CBC4 571 SET 0.H

03FE CBO3 511 RLC E 0472 CBCS 572 SET 0L

0400 CBO4 512 RLC H 0474 CBCE 573 SET 1,(HL)

0402 CBOS5 513 RLC L 0476~ DDCBOSCE 574 SET 1.(IX+IND)
0404 07 514 RLCA 047A FDCBOSCE 575 SET 1.(IY +IND)
0405 EDOF 515 RLD 047E CBCF 576 SET 1LA

0407 CBIE 516 RR (HL) 04380 CBC8 571 SET 1B

0409 DDCBOSIE 517 RR (IY +IND) 0482 CBC9 578 SET 1.C

040D FDCBOSIE 518 RR (IY +IND) 0484 CBCA 579 SET 1.D

0411 CBIF 519 RR A 0486 CBCB 580 SET LLE

0413 CBI8 520 RR B 0488 CBCC 581 SET ILH

0415 CBI9 521 RR C 0484 CBCD 582 SET I.L

0417 CBIA 522 RR D 043C CBD6 583 SET 2,(HL)

0419 CBIB 523 RR E 043E DDCBO5D6 584 SET 2.(IX+IND)
041B CBIC 524 RR H 0492 FDCBO5D6 585 SET 2.(IY +IND)
041D CBID 525 RR L 0496 CBD7 586 SET 2A

041F IF 526 RRA 0498 CBDO 587 SET 2B

0420 CBOE 527 RRC (HL) 049A CBDI 588 SET 2.C

0422 DDCBOSOE 528 RRC (IX+IND) 049C CBD2 589 SET 2D

0426 FDCBOSOE 529 RRC (IY +IND) 049E CBD3 590 SET 2E

042A CBOF 530 RRC A 04A0 CBD4 591 SET 2.H

042C CB08 531 RRC B 04A2 CBD5 592 SET 2L

042E CBO9 532 RRC C 04A4 CBD8 593 SET 3B

0430 CBOA 533 RRC D 04A6 CBDE 594 SET 3,(HL)

0432 CBOB 534 RRC E 04A8 DDCBOSDE 595 SET 3(IX+IND)
0434 CBOC 535 RRC H 04AC FDCBOSDE 596 SET 3,(IY +IND)

244

OBJ CODE
CBDA
CBDB
CBDC
CBDD
CBE6
DDCBOSE6
FDCBOSE6
CBE7
CBEO
CBEI
CBE2
CBE3
CBE4
CBES
CBEE
DDCBOSEE
FDCBOSEE
CBEF
CBES
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCBO5F6
FDCBO5F6
CBF7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CBFE
DDCBOSFE
FDCBOSFE
CBFF
CBF8

CF9

CBFA
CBFB
CBFC
CBFD
CB26
DDCB0526
FDCB0526
CB27

CB20

CB21

CB22

STMT
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SLA
SLA
SLA
SLA
SLA
SLA
SLA

SOURCE STATEMENT
3.D
3E
3,H
3L
4,(HL)
4,(IX+IND)
4,(IY +IND)
4,A
4B
4.C
4D
4,E
4H
4,L
5.(HL)
5,(IX+IND)
5,(IY +IND)
5.A
5.B
5,C
5.D
5.E
5.H
5L
6,(HL)
6,(IX+IND)
6,(IY +IND)
6,A
6,B
6,.C
6,D
6.E
6,H
6,L
7,(HL)
7,(IX +IND)
7.0Y +IND)
1A
7B
7,C
7D
7.E
7H
7,L
(HL)
(IX+IND)
(IY +IND)

T 0w

LOC
052E
0530
0532
0534
0536
053A
053E
0540
0542
0544
0546
0548
054A
054C
054E
0552
0556
0558
055A
055C
055E
0560
0562
0564
0565

0568
056B
056C
056D
056E
056F
0570
0571

0572
0574
0575
0578
057B
057C
057D
057E
057F
0580
0581

0582

0584

OBJ CODE
CB23

CB24
CB25
CB2E
DDCBOS2E
FDCBO52E
CB2F
CB28

CB29
CB2A
CB2B
CB2C
CB2D
CB3E
DDCBOS3E
FDCBOS3E
CB3F
CB38

CB39
CB3A
CB3B
CB3C
CB3D

96

DD9605
FD9605

STMT
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695 NN
696 IND
697 M
698 N
699 DIS
700

SLA
SLA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SRL
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
DEFS
EQU
EQU
EQU
EQU
END

APPENDIX
C

SOURCE STATEMENT
E

H

L

(HL)
(IX+IND)
(IY +IND)

mCImmoaws>
=

)
(IX+IND)
(IY +IND)

ZO I MmO O W >

(HL)
(IX+IND)
(IY +IND)

SR ZCmmg 0w

245

SERIES | EDITOR/ASSEMBLER

AppendixF /Z-80 CPU Register and
Architecture

This section gives information about the actual Z80 chip including the Central
Processing Unit (CPU) Register configuration.

7Z-80 CPU Architecture

A block diagram of the internal architecture of the z-80 cpu is shown in Figure
2. The diagram shows all of the major elements in the cpu and it should be
referred to throughout the following description.

CPU Registers

The z-80 cpu contains 208 bits of R/W memory that are accessible to the
programmer. Figure 3 illustrates how this memory is configured into eighteen
8-bit registers and four 16-bit registers. All z-8o registers are implemented using
static RAM. The registers include two sets of six general purpose registers that
may be used individually as 8-bit registers or in pairs of 16-bit registers. There
are also two sets of accumulator and flag registers.

Special Purpose Registers

8-BIT
DATA BUS

<>

DATA BUS
CONTROL

s

K INST.
REG < INTERNAL DATA BUS ALU

INSTRUCTION
DECODE
&
cPU
13 CONTROL cPU

CPU AND

SYSTEM CPU
CONTROL CONTROL

SIGNALS
‘% ADDRESS
‘ CONTROL

+5V GND 16.8IT
ADDRESS BUS

REGISTERS

<>

<4

Figure 2, Z-80 CPU Block Diagram.

246

APPENDIX
B S R S B

MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F'
B c B’ c
GENERAL
D E D’ E’ PURPOSE
REGISTERS
H L H L
INTERRUPT MEMORY
VECTOR REFRESH
i R

INDEX REGISTER IX
SPECIAL
PURPOSE
REGISTERS

INDEX REGISTER 1Y

STACK POINTER SP

PROGRAM COUNTER PC

Figure 3, Z-80 CPU Register Configuration.

1. Program Counter (PC). The program counter holds the 16-bit address of the
current instruction being fetched from memory. The pc is automatically
incremented after its contents have been transferred to the address lines.
When a program jump occurs the new value is automatically placed in the pc,
overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current
top of a stack located anywhere in external system RAM memory. The
external stack memory is organized as a last-in first-out (LIFO) file.

Data can be pushed onto the stack from specific CpU registers or popped off
of the stack into specific cpu registers through the execution of pusH and pop
instructions. The data popped from the stack is always the last data pushed
onto it. The stack allows simple implementation of multiple level interrupts,
unlimited subroutine nesting and simplification of many types of data
manipulation.

3. Two Index Register (X & 1Y). The two independent index registers hold a
16-bit base address that is used in indexed addressing modes. In this mode,
an index register is used as a base to point to a region in memory from which
data is to be stored or retrieved. An additional byte is included in indexed
instructions to specify a displacement from this base. This displacement is
specified as a two’s complement signed integer. This mode of addressing
greatly simplifies many types of programs, especially where tables of data
are used.

247

SERIES | EDITOR/ASSEMBLER

4. Interrupt Page Address Register (1). The z-80 cpu can be operated in a
mode where an indirect call to any memory location can be achieved in
response to an interrupt. The 1 Register is used for this purpose to store the
high order 8-bits of the indirect address while the interrupting device provides
the lower 8-bits of the address. This feature allows interrupt routines to be
dynamically located anywhere in memory with absolute minimal access time
to the routine.

5. Memory Refresh Register (r). The z-80 cpu contains a memory refresh
counter to enable dynamic memories to be used with the same ease as static
memories. Seven bits of this 8 bit register are automatically incremented after
each instruction fetch. The eighth bit will remain as programmed as the result
of an LD R, A instruction. The data in the refresh counter is sent out on the
lower portion of the address bus along with a refresh control signal while the
cpu is decoding and executing the fetched instruction. This mode of refresh is
totally transparent to the programmer and does not slow down the cpu
operation. The programmer can load the Rr register for testing purposes, but
this register is normally not used by the programmer. During refresh, the
contents of the 1 register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The cpu includes two independent 8-bit accumulators and associated 8-bit flag
registers. The accumulator holds the results of 8-bit arithmetic or logical
operations while the flag register indicates specific conditions for 8 or 16-bit
operations, such as indicating whether or not the result of an operation is equal
to zero. The programmer selects the accumulator and flag pair that he wishes to
work with a single exchange instruction so that he may easily work with either
pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six
8-bit registers that may be used individually as 8-bit registers or as 16-bit
register pairs by the programmer. One set is called Bc, DE and HL while the
complementary set is called BC, DE and HL. At any one time the programmer
can select either set of registers to work with through a single exchange
command for the entire set. In systems where fast interrupt response is required,
one set of general purpose registers and an accumulator/flag register may be
reserved for handling this very fast routine. Only a simple exchange command
need be executed to go between the routines. This greatly reduces interrupt
service time by eliminating the requirement for saving and retrieving register
contents in the external stack during interrupt or subroutine processing. These
general purpose registers are used for a wide range of applications by the
programmer. They also simplify programming, especially in ROM based systems
where little external read/write memory is available.

248

APPENDIX

Arithmetic & Logic Unit (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU.
Internally the ALU communicates with the registers and the external data bus on
the internal data bus. The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical or Set bit

Logical Exclusive oR Reset bit
Compare Test Bit

Instruction Register and CPU Control

As each instruction is fetched from memory, it is placed in the instruction
register and decoded. The control sections performs this function and then
generates and supplies all of the control signals necessary to read or write data
from or to the registers, control the ALU and provide all required external control
signals.

Z-80 CPU Pin Description

The z-80 cpu is packaged in an industry standard 40 pin Dual In-Line Package.
The 1o pins are shown in Figure 4 and the function of each is described below.

Ap-Ajs Tri-state output, active high. Ay-A |5 constitute a 16-bit

(Address Bus) address bus. The address bus provides the address for
memory (up to 64K bytes) data exchanges and for /O
device data exchanges. 1/O addressing uses the 8 lower
address bits to allow the user to directly select up to 256
input or 256 output ports. A, is the least significant address
bit. During refresh time, the lower 7 bits contain a valid
refresh address.

Dy-D;, Tri-state input/output, active high. Dy-D; constitute an

(Data Bus) 8-bit bidirectional data bus. The data bus is used for data
exchanges with memory and I/O devices.

M, Output, active low. M, indicates that the current machine

(Machine Cycle cycle is the OP code fetch cycle of an instruction execution.

one) Note that during execution of 2-byte op-codes, M, is

generated as each op-code byte is fetched. These two byte
op-codes always begin with CBH, DDH, EDH or FDH. M,
also occurs with IORQ to indicate an interrupt acknowledge
cycle.

249

SERIES | EDITOR/ASSEMBLER
T 2

SYSTEM
CONTROL) RD

cPU
CONTROLY iNT

cPU 8USRQ
BUS
CONTROL | BUSAK

30
<—2—Z——- — = Ap
31 A,
19 32
20 33 X
-y -—34—’ Ag
4—21— ? A4
<..L L & Ag
36 Ag
28 37 A
- P———’n 7 ADDRESS
L = Ag BUS
18 39
R RO
—— A
1
_i.. __2’ A”
| < & A
16 2-80 CPU 3 12
16 ol — A3
Voo ™ Alg
2 8 A5
R
25
23
o~
14
15 %
re—— 0O,
6 12
8 02
LN la—— D,
29 7 DATA
—_— ‘T‘. D4 BUS
fe——» Og
%
te——— D

Figure 4, Z-80 Pin Configuration.

MREQ
(Memory
Request)

IORQ
(Input/Output
Request)

RD
(Memory Read)

WR
(Memory Write)

250

Tri-state output, active low. The memory request signal
indicates that the address bus holds a valid address for a
memory read or memory write operation.

Tri-state output, active low. The IORQ signal indicates that
the lower half of the address bus holds a valid I/O address
for a I/O read or write operation. An IORQ signal is also
generated with an M, signal when an interrupt is being
acknowledged to indicate that an interrupt response vector
can be placed on the data bus. Interrupt Acknowledge
operations occur during M; time while I/O operations never
occur during M, time.

Tri-state output, active low. RD indicates that the CPU
wants to read data from memory or an I/O device. The
addressed 1/0 device or memory should use this signal to
gate data onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data
bus holds valid data to be stored in the addressed memory
or I/O device.

APPENDIX

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt
Request)

NMI
(Non Maskable
Interrupt)

RESET

Output, active low. RFSH indicates that the lower 7 bits of
the address bus contain a refresh address for dynamic
memories and the current MREQ signal should be used to
do a refresh read to all dynamic memories.

Output, active low. HALT indicates that the CPU has
executed a HALT software instruction and is awaiting either
a non maskable or a maskable interrupt (with the mask
enabled) before operation can resume. While halted, the
CPU executes NOP’s to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the
addressed memory or 1/O devices are not ready for a data
transfer. The CPU continues to enter wait states for as long
as this signal is active. This signal allows memory or /O
devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated
by I/O devices. A request will be honored at the end of

the current instruction if the internal software controlled
interrupt enable flip-flop (IFF) is enabled and if the BUSRQ
signal is not active. When the CPU accepts the interrupt, an
acknowledge signal (IORQ during M, time) is sent out at
the beginning of the next instruction cycle.

Input, negative edge triggered. The non maskable interrupt
request line has a higher priority than INT and is always
recognized at the end of the current instruction, independent
of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location
0066y. The program counter is automatically saved in the
external stack so that the user can return to the program that
was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a
BUSRQ will override a NMI.

Input, active low. RESET forces the program counter to
zero and initializes the CPU. The CPU initialization
includes:

1) Disable the interrupt enable flip-flop
2) Set Register [= 00y
3) Set Register R = 00y
4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the
inactive state.

251

SERIES | EDITOR/ASSEMBLER

BUSRQ Input, active low. The bus request signal is used to request

(Bus Request) the CPU address bus, data bus and tri-state output control
signals to go to a high impedance state so that other devices
can control these buses. When BUSRQ is activated, the
CPU will set these buses to a high impedance state as soon
as the current CPU machine cycle is terminated.

BUSAK Output, active low. Bus acknowledge is used to indicate to
(Bus the requesting device that the CPU address bus, data bus
Acknowledge) and tri-state control bus signals have been set to their high

impedance state and the external device can now control
these signals.

P Single phase TTL level clock which requires only a 330
ohm pull-up resistor to + 5 volts to meet all clock
requirements.

Z-80 CPU Instruction Set

The z-80 cpu can execute 158 different instruction types including all 78 of the
8080A cpu. The instructions can be broken down into the following major
groups:

* Load and Exchange

* Block Transfer and Search

* Arithmetic and Logical

* Rotate and Shift

* Bit Manipulation (set, reset, test)

¢ Jump, Call and Return

* Input/Output

* Basic cpu Control

252

Subject Page
Abbreviations 17
Accumulator 248
ADCAS 109
ADCHL,sscoin... 142
Add/Subtractflag 231
ADDAHL) 107
ADDA,(IX+d) ... 107
ADDAN 106
ADDAY ... 105
ADDHL,ss 141
ADDIX,pp oo 144
ADDA,(IY+d) ... 108
ADDIY,rr . 145
Alphabetical list of Z-80
instructions 240-245
ANDS 115
Arithmetic logic unit (ALU) 249
Assembler, 21
Commands 21
Definitions 25-26
Output 23
Switch 21-22
Using the assembler 21
BITB,HL) 178
BITB,(IX+d) 179
BITB,(IY+d) 180
BITb,r .. 177
CALLcenn 202
CALLNnn 201
Carryflag ... 231
CCF 134
Central processing unit (CPU) 249
Comments 26
Computer Type ..., 4
CPD ... 102
CPDR 103
CPlL . 99
CPIR ... 101
CPL ... 132
CPs 122
CPU block diagram 246
CPU—pin description 249-252
Currentline 7

INDEX

INDEX

Subject Page
DAA . .. 131
DECIX 149
DECIY 149
DECM 127
DECSS ... 148
Dl .o 136
DINZec i, 199
Editor
Commands 8-15,18,19
Definition 1
Featuresof 2
Howtouse 2,5,7
El R 137
Error messages (assembler) 24-25
Errormessages (Editor) 16
EXAFAF 87
EXDEHL 87
Expressions 29
EX(SP),HL 89
EX(SP)IX ... 90
EX(SP)IY ... 91
EXX 88
File.......o 7
Filename 7
Flagregister 248
Flags(status) 231
Half-Carryflag 232-233
HALT ... 136
IMO ... 138
IMT 138
IM2 139
INA(N) 211
INCHL) ... 125
INCIX .o 146
INC(OX+d) ... 125
INCIY . 147
INC(Y+d) ..o 126
INCr ... 124
Increment 7
INCss ..., ... 146
IND ... 216
Indexregisters 247
INDR 217

253

SERIES | EDITOR/ASSEMBLER

Subject Page
INL . 213
INIR ... 214
Input/Output commands 13
INILC) oo 212
Interruptregister 248
ltalictype 4
JPcenn .. 190
JPMHL) .o 197
JP(X) o 198
JPAY) 198
JPnn 189
JRCe ... 192
JRe ... 191
JRNCe 193
JRNZe 195
JRZe 194
Label 26
LDABC) ... 57
LDADE) 57
LDA . 61
LDA(NN) ... 58
LDAR ... 62
LDBC),A ... 59
LDD .. . 96
LDdd,(nn) ... 68
LDdd,nn ... 65
LD(DE),A 59
LDDR ... 97
LDMHL),N oo 54
LDHL,(nN) ..o 67
LDHL),r oo 52
LDl 93
LDLA 62
LDIR .. 94
LD (IX4+d),n ... 55
LD (IX4+d),r oo 52
LDIX,nn oo 66
LDIX,(nn) ..o 69
LD(IY+d),n .o 56
LD(Y+d),r oo 53
LDIY,nn .. o 67
LDIY,(nn) ... 70
LD(nn),A ... 60
LD(nn),dd 72
LD(nn),HL 71

254

Subject Page
LD (nn),IX e 73
LD(nn),IY .. 74
LDRA ... 63
LDG(HL) oo 49
LDr(IX+d) .o 49
LDR(Y+d) oo 51
LDrn oo 48
LDy 47
LDSPHL 75
LDSPIX .. 76
LDSPIY . 77
Memory refresh register 248
Mnemonics, 26
Model | —Subroutines 228
NEG ... 133
NOP 135
Notations 4
Numerical list of Z-80 instructions 234-239
Objectcode 33
Objectcode 4
Objectfile 4
Operands 26, 29
Operations 27
ORS . 117
OTDR ... 224
OTIR ... 221
OUT(C)yr v 219
OUTD ..o 223
OUTI. ... 220
OUT(N),A ... 218
Parity/Overflowflag 232
POPIX ..o 82
POPIY ... 84
POPQQ ... 81
Programcounter 247
Pseudo Operations 27-28
PUSHIX, 79
PUSHIY ... 80
PUSHQQ ... 77
Register configuration 246
RESbm 186
RET ... 204
RETCC ... 205
RETI ... 207
RETN ... 208

Subject Page
RLA .. 152
RLCA 151
RLCHL) ... 156
RLC (IX+d) ... 157
RLC(UY+d) ... 158
RLCr .. 155
RLD ... 173
RLm ... 160
RRA 154
RRCA 153
RRCm ... 162
RRD 175
RRm .. 164
RSTp ... 209
Sample Programming 31-36
SBCAS ..o 113
SBCHL,SS ... 143
SCF 135
SETb,(HL) ... 182
SETb,(IX+d) ... 183
SETb,(IY+d) ..o 185
SETb,r oo 181
Signflag 233
Using the TPSRC utility 227
SLAM . 166
SourceCode 4
SourceFile 4
Specialkeys 8,17
Special Terms 4
SRAM ... 169
SRLM .. 171
Stack Pointer 247
Statusflags 231
SUBS ... 111
Symbols L 17
Text ..o 7
Textbuffer, 7
Texthandling 7
Text handling commands 9
Trial Assembly 32
XORsS ..o 119
Z-80instructions 37-226
Zeroflag ...l 233

INDEX

255

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
“AS IS” BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability,loss or damage caused or
alleged to be caused directly or indirectly by computer equipment or pro-
grams sold by Radio Shack, including but not limited to any interruption of
service, loss of business or anticipatory profits or consequential damages
resulting from the use or operation of such computer or computer programs.
NOTE: Good data processing procedure dictates that the user test the
program, run and test sample sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE

A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license
to use on CUSTOMER’S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not title
to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER’S computer (if the software allows a back-
up copy to be made), and shall include Radio Shack’s copyright notice on
all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack’s system and applications soft-
ware (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions of
this software License (paragraphs A, B, and C) shall also be applicable to
third parties purchasing such software from CUSTOMER.

RADIO SHACK EA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE,N.SW.2116 5140 NANINNE WEST MIDLANDS WS10 7N

Printed in U.S.A.

* % * % kx k kx *x k k k *k k k *k k k *

ALL USERS MODELS I/III
IMPORTANT NOTICE PLEASE READ FIRST

* % * ¥ * *
* % ¥ ¥ ¥ *

k x %k kx %k %k % k %k k k% %k k k k %k *k %

Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES TO READ

NUMBER

26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7
MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

26-1149 MODEL I version page 1, 3, 4, 5, 6, and 8

MODEL III version page 2, 8

8759170

* k x % *x * % %k k * % k *x *x *x k% Xk *

MODEL I USERS
IMPORTANT NOTICE PLEASE READ FIRST

* ¥ * ¥ ¥ *
* % * * X *

* % % * %k k k k k k k *x *x k k *x * %

UPGRADE UTILITY ON TRSDOS 2. 3B

The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2. 3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD: TRSDOS 2.1, 2.2, and 2.3.

NEW: TRSDOS 2. 3B.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

used by a program.

system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.

UPGRADE: A program contained on the TRSDOS 2.3B
diskette.

1l of 8

* % % % % * * %k %k k *x k kx % kx kx k kx

k
MODEL III USERS *
IMPORTANT NOTICE PLEASE READ FIRST *
*

*

* % ¥ F ¥ *

x k% * % % %k *x *x % *x k *x * k k *x * %

XFERSYS UTILIPY ON TRSDOS 1. 3

The MODEL III diskette in this package contalns a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD: TRSDOS 1.1 and 1.2.

NEW: TRSDOS 1.3.

file: A collection of information stored as one
named unit in the directory.

program: A file which causes the computer to
perform a function.

data: Information contained in a file which is

-used by a program.
system diskette: A diskette containing TRSDOS. When this
diskette is placed in drive 0 and the
RESET switch is pressed, TRSDOS will begin
to run.
data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and
the RESET switch is pressed, the screen’
will clear and "Not a SYSTEM Disk" will be
displayed.
XFERSYS: A program contained on the TRSDOS 1.3
diskette.

2 of 8

TO: Owners of the Communications Package, Series I Editor

Assembler, BASIC Compiler, BASIC Runtime, COBOL
Compiler, and COBOL Runtime.

FROM: Radio Shack Computer Merchandising
DATE: August 18, 1981

RE: TRSDOS 2.3B for the MODEL I

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. vVariable length records have been corrected, in all
aspects.

2. In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.

4, The following commands have been added:

CLS
This command clears the display and puts it in the 64-

character mode.

PATCH 'filespec' (ADD=aaaa,FIND=bb,CHG=cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find

and change. You can specify the contents of
more than one byte.
'cc' - the new contents to replace 'bb'

For example:

PATCH DUMMY/CMD (ADD=4567,FIND=CD3300,CHG=CD3B00)
changes CD3300, which resides at memory location 4567
(HEX) in the file named DUMMY/CMD, to CD3B0O.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at

a time. For example:

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3B)
replaces the contents of the second byte in the above
example.

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the

3 of 8

'source device' and 'destination device' using these
abbreviations:

T - Tape

D - Disk

R - RAM (Memory)
The only valid entries of this command are:

TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)
For example

TAPE (S=D,D=T)
starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

5. These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. 1If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:

COPY FILEl:0 to FILE3:0
duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS Drive: 0 04/15/81

Filename Attrb LRL #Rec #Grn #EXt EOF
JOBFILE/BLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0

*** 171 Free Granules **%*

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

4 of 8

a. the first character is either I (Invisible file)
or N (Non-invisable file)
b. the second character is S (System file) or *
(User file)
c. the third character is the password protection
status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no
update word
U - the file has an update word but no
access word
B - the file has both update and access
word
d. the fourth character specifies the level of
access assigned to the access word:
0 - total access
1 - kill the file and everything listed
below
2 - rename the file and everything listed
below
- this designation is not used
- write and everything listed below
read and everything listed below
- execute only
- no access

NOoOYO s W
I

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.
7. Number of Granules - how many granules have been used

in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

5 of 8

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

- If you determine that you need to use the UPGRADE
utility then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive O,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

This means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.3B format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.3B error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
FIle (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE _ AFTER UPGRADE
TRSDOS 2.1, 2.2, 2.3 TRSDOS 2. 3B
FILE1l EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYS1l/sys SYS2/SYS
SYS3/SYS SYS4/SYS SYS5/SYS
SYS6/SYS FORMAT/CMD BACKUP/CMD
BASICR/CMD BASIC/CMD

- SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

TIPS ON GETTING OBJECT FILES FROM TRSDOS 2. 3B
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine”" under the TRSDOS 2.3 BASIC interpreter,
follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive 0 and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIFT/CMD:0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LLOAD SHIFT/CMD:O0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive 0 and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09',TRA=X"'7D00"')

Reference Section 4 of your manual and note that X'7000'
is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be

used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

7 of 8

* % % k kx k * kx *x *x *k *x % *

*

*

* IMPORTANT NOTICE

* FOR

* COMMUNICATIONS PACKAGE
* DISK SYSTEM USERS

*
*

* % Ok X ¥ F *

* * % * * k * *x %k * % % %

The 26-1149 Communications Package is delivered on MODEL I
TRSDOS 2.3B and Model III TRSDOS 1.3. Communication can
occur MODEL I to I, III to III, or I to III, but only under
MODEL I TRSDOS 2.3B and MODEL III TRSDOS 1l.3.

Data on MODEL I TRSDOS 2.1, 2.2, or 2.3 must be UPGRADEAd to
2.3B beofre it can be transmitted. Backup the diskette
before UPGRADEING.

Data on MODEL III TRSDOS 1.1 and 1.2 must be XFERSYSed to
1.3 before it can be transmitted. Backup the diskette
before XFERSYSing.

NOTE: Radio Shack Application programs on TRSDOS 1.1, 1.2,
2.1, 2.2, or 2.3 were tested on the particular
version of TRSDOS they were purchased on.

No quarantee is implied that these programs will
work correctly after being UPDATEd to MODEL I TRSDOS
2.3B or XFERSYSed to MODEL III TRSDOS 1l.3.

IMPORTANT NOTE FOR MODEL I USERS: You cannot run BASIC
programs because TRSDOS 2.3 does not contain DISK BASIC.

On page 20 of the Communications Package manual, we suggest
you use SAVE, a DISK BASIC command, to save a transferred
BASIC tape program on diskette. You will not be able to use
the SAVE command with the TRSDOS 2.3B diskette, since it
does not contain DISK BASIC.

8 of 8

Addendum to the
Communications Package Manual
Catalog Number 26-1149

Please make these corrections to your Communications Package
manual:

1. Page 16: Change <SHIFT> <X> to <SHIFT> <down
arrow> <X>. In the next sentence, change <SHIFT>
<down arrow> to <SHIFT> <up arrow>.

2. Page 32: Memory location 16889 should be set to
108 rather than 104.

3. Page 35: Please note that the control function
does not work on some of the early Model III's. You
will have to press RESET to exit the TERM program
and return to BASIC or TRSDOS.

If you have a Model III, please note the following regarding
how to transfer tape data files (described in the manual on
pages 22 and 23):

COMPROG will prompt you and your friend with Cass?
before each block (portion) of data is transferred.
Both of you must specify the baud rate in response
to each of these prompts.

. BASIC data files may only be transmitted at a low
baud rate. Therefore, when transmitting a BASIC
data file, you must respond to all the Cass? prompts
with L. If you will be writing a program to read
the file, you must specify the low baud rate before
running the program.

. We suggest that you use only a tape which contains
a single data file. (If you have more than one
data file on a tape, you will have to manually stop
the tape recorder after the file is transmitted.
Otherwise, COMPROG will continue transferring all
the data on the tape.)

Note for Tape System Customers:

If you exit one of the communications programs, you can
return to it with the SYSTEM command (providing the program
in memory has not been over-written). Type SYSTEM <ENTER>.
In response to the *? prompt, type / followed by the
program's transfer address.

For the HOST and TERM programs, the transfer address is the
Memory Size address (listed on page 8) plus one. For the
COMPROG program, the transfer address is 46357 on a 32K
system, or 62741 on a 48K system.

Thank You!
Radio Shack
A Division of Tandy Corporation
875-9141

	e000-doc_20100818071909.pdf
	e000-doc_20100818073929.pdf
	e000-084-doc_20100818073343.pdf
	e085-166-doc_20100818073641.pdf
	e167-212-doc_20100818072817.pdf
	e213-end-doc_20100818073001.pdf
	e999-doc_20100818073854.pdf
	e-998Copy of doc_20100818073938.pdf
	one.pdf
	1
	2

